Skip to main content
Log in

Taxonomic and Size–Morphological Groups of Bacterioplankton in Two Mongolian Reservoirs

  • MICROBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The taxonomic and size-morphological structure of bacterioplankton has been studied in two large Mongolian reservoirs and the rivers on which they are built. Correlations between the taxonomic and size groups of bacteria and their main consumers, heterotrophic nanoflagellates, have been revealed. It has been shown that the protists consume large and active bacteria of classes Gammaproteobacteria and Bacteroidetes selectively, leaving small-sized Alphaproteobacteria and medium-sized Actinobacteria as dominants in the communities. The size–morphological structure of bacterioplankton formed by consumers is accompanied by spatial changes in the subdominants, probably performing similar functions in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Batani, G., Perez, G., Martinez de la Escalera, G., Piccini, C., and Fazi, S., Competition and protist predation are important regulators of riverine bacterial community composition and size distribution, J. Freshwater Ecol., 2016, vol. 31, no. 4, pp. 609–623.

    Article  CAS  Google Scholar 

  2. Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures, Appl. Environ. Microbiol., 1983, vol. 46, no. 2, pp. 491–498.

    Article  CAS  Google Scholar 

  3. Chrós, R.J., Adamczewski, T., Kalinowska, K., and Skowronska, A., Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status, J. Microbiol. Biotechnol., 2009, vol. 19, no. 9, pp. 858–868.

    Article  Google Scholar 

  4. Cole, J.R., Wang, Q., Fish, J.A., Chai, B., Mc Garrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., and Tiedje, J.M., Ribosomal database project: data and tools for high throughput rRNA analysis, Nucleic Acids Res., 2014, vol. 42 (database issue), pp. D633–D642.

  5. Ferguson, R.L. and Rublee, P., Contribution of bacteria to standing crop of coastal plankton, Limnol. Oceanogr., 1976, vol. 21, pp. 141–145.

    Article  Google Scholar 

  6. Gasol., J.M., del Giorgio, P.A., Massana, R., and Duarte, C.M., Active versus inactive bacteria: size-dependence in a coastal marine plankton community, Mar. Ecol.: Proc. Ser., 1995, vol. 128, pp. 91–97.

    Article  Google Scholar 

  7. Hahn, M.W., Lunsdorf, H., Wu, Q., Schauer, M., Hofle, M.G., Boenigk, J., and Stadler, P., Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1442–1451.

    Article  CAS  Google Scholar 

  8. Hutalle-Schmelzer, K.M.L., Zwirnmann, E., Kruger, A., and Grossart, H.-P., Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions, FEMS Microb. Ecol., 2010, vol. 72, pp. 58–73.

    Article  CAS  Google Scholar 

  9. Jürgens, K., Predation on bacteria and bacterial resistance mechanisms: comparative aspects among different predator groups in aquatic systems, in Predatory Prokaryotes, Jurkevitch, E., Ed., Berlin: Springer-Verlag, 2007, vol. 4, pp. 57–92.

    Google Scholar 

  10. Jürgens, K. and Mats, C., Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 413–434.

    Article  Google Scholar 

  11. Kirchman, D.L., The ecology of Cytophaga-Flavobacteria in aquatic environments, FEMS Microb. Ecol., 2002, vol. 39, pp. 91–100.

    CAS  Google Scholar 

  12. Kopylov, A.I. and Kosolapov, D.B., Bakterioplankton vodokhranilishch Verkhnei i Srednei Volgi (Bakterioplankton of Upper and Middle Volga Reservoirs), Moscow: Sarat. Gos. Univ., 2008.

  13. Lebaron, P., Servais, P., Agogue, H., Courties, C., and Joux, F., Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?, Appl. Environ. Microbiol., 2001, vol. 67, pp. 1775–1782.

    Article  CAS  Google Scholar 

  14. Lindström, E.S., Vrede, K., and Leskinen, E., Response of a member of the Verrucomicrobia, among the dominating bacteria in a hypolimnion, to increased phosphorus availability, J. Plankton. Res, 2004, vol. 26, pp. 241–246.

    Article  CAS  Google Scholar 

  15. Lliros, M., Inceoğlu, Ö., García-Armisen, T., Anzil, A., Leporcq, B., Pigneur, L.M., Viroux, L., Darchambeau, F., Descy, J.-P., and Servais, P., Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status, PLoS One, 2014, vol. 9, no. 12. e116145.

    Article  CAS  Google Scholar 

  16. Newton, R.J. and McLellan, S.L., A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan, Front. Microbiol., 2015, vol. 6, p. 1028. https://doi.org/10.3389/fmicb.2015.01028

    Article  PubMed  PubMed Central  Google Scholar 

  17. Newton, R.J., Jones, S.E., Eiler, A., Mcmahon, K.D., and Bertilsson, S., A guide to the natural history of freshwater lake bacteria, Microbiol. Mol. Biol. Rev., 2011, vol. 75, pp. 14–49.

    Article  CAS  Google Scholar 

  18. Pernthaler, J., Posch, T., Simek, K., Vrba, J., Pernthaler, A., Glockner, F.O., Nübel, U., Psenner, R., and Amann, R., Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2145–2155.

    Article  CAS  Google Scholar 

  19. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  20. Rumyantseva, E.V., Kosolapova, N.G., and Kosolapov, D.B., Relations between bacterioplankton, heterotrophic nanoflagellates, and virioplankton in the littoral zone of a large plain reservoir: impact of bird colonies, Microbiology (Moscow), 2016, vol. 85, no. 5, pp. 620–628.

    Article  CAS  Google Scholar 

  21. Salcher, M.M., Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes, J. Limnol., 2014, vol. 73, no. 1, pp. 74–87.

    Google Scholar 

  22. Sanders, R.W., Caron, D.A., and Berninger, U.G., Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison, Mar. Ecol.: Proc. Ser., 1992, vol. 86, pp. 1–14.

    Article  Google Scholar 

  23. Simek, K., Kojecka, P., Nedoma, J., Hartman, P., Vrba, J., and Dolan, J.R., Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir, Limnol. Oceanogr., 1999, vol. 44, no. 7, pp. 1634–1644.

    Article  Google Scholar 

  24. Smith, M.B., Rocha, A.M., Smillie, C.S., Olesen, S.W., Paradis, C., Wu, L., Campbell, J.H., Fortney, J.L., Mehlhorn, T.L., Lowe, K.A., Earles, J.E., Phillips, J., Techtmann, S.M., Joyner, D.C., Elias, D.A., Bailey, K.L., Hurt, R.A., Preheim, S.P., Sanders, M.C., Yang, J.Y., Mueller, M.A., Brooks, S., Watson, D.B., Zhang, P., He, Z., Dubinsky, E.A., Adams, P.D., Arkin, A.P., Fields, M.W., Zhou, J., Alm, E.J., and Hazen, T.C., Natural bacterial communities serve as quantitative geochemical biosensors, MBio, 2015, vol. 6, no. 3. https://doi.org/10.1128/mBio.00326-15

  25. Sommaruga, R. and Psenner, R., Permanent presence of grazing-resistant bacteria in a hypertrophic lake, Appl. Environ. Microbiol., 1995, vol. 61, pp. 3457–3459.

    Article  CAS  Google Scholar 

  26. Winter, C., Bouvier, T., Weinbauer, M.G., and Thingstad, T.F., Trade-offs between competition and defense specialists among unicellular organisms: the “killing the winner” hypothesis revisited, Microbiol. Mol. Biol. Rev., 2010, vol. 74, no. 1, pp. 42–57.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.L. Bel’kova (Research Center for Family Health and Human Reproduction (Irkutsk)) for her help in obtaining amplicon libraries and their sequencing, as well as in processing and discussing the results.

Funding

This study was carried out within the framework of state task no. АААА-А18-118012690098-5. The field studies were supported by the Joint Russian–Mongolian complex biological expedition of the Russian Academy of Sciences and the Academy of Sciences of Mongolia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kuznetsova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, E.V., Kosolapov, D.B. & Kosolapova, N.G. Taxonomic and Size–Morphological Groups of Bacterioplankton in Two Mongolian Reservoirs. Biol Bull Russ Acad Sci 47, 27–34 (2020). https://doi.org/10.1134/S1062359019060104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019060104

Navigation