Skip to main content
Log in

Finding Modular Functions for Ramanujan-Type Identities

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

This paper is concerned with a class of partition functions a(n) introduced by Radu and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg and Robins, and Radu’s algorithms, we present an algorithm to find Ramanujan-type identities for \(a(mn+t)\). While this algorithm is not guaranteed to succeed, it applies to many cases. For example, we deduce a witness identity for \(p(11n+6)\) with integer coefficients. Our algorithm also leads to Ramanujan-type identities for the overpartition functions \(\overline{p}(5n+2)\) and \(\overline{p}(5n+3)\) and Andrews–Paule’s broken 2-diamond partition functions \(\triangle _{2}(25n+14)\) and \(\triangle _{2}(25n+24)\). It can also be extended to derive Ramanujan-type identities on a more general class of partition functions. For example, it yields the Ramanujan-type identities on Andrews’ singular overpartition functions \(\overline{Q}_{3,1}(9n+3)\) and \( \overline{Q}_{3,1}(9n+6)\) due to Shen, the 2-dissection formulas of Ramanujan, and the 8-dissection formulas due to Hirschhorn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 4ti2 team: 4ti2 – A software package for algebraic, geometric and combinatorial problems on linear spaces software. Available at https://4ti2.github.io

  2. Andrews, G.E.: Ramunujan’s “lost” notebook III. The Rogers–Ramanujan continued fraction. Adv. Math. 41, 186–208 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E.: Singular overpartitions. Int. J. Number Theory 11(5), 1523–1533 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Andrews, G.E., Paule, P.: MacMahon’s partition analysis XI: Broken diamonds and modular forms. Acta Arith. 126(3), 281–294 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. London Math. Soc. (3) 4, 84–106 (1954)

    MathSciNet  MATH  Google Scholar 

  6. Berndt, B.C.: Number Theory in the Spirit of Ramanujan. Student Mathematical Library, 34. Amer. Math. Soc., Providence, RI (2006)

  7. Bilgici, G., Ekin, A.B.: Some congruences for modulus 13 related to partition generating function. Ramanujan J. 33(2), 197–218 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bilgici, G., Ekin, A.B.: \(11\)-Dissection and modulo \(11\) congruences properties for partition generating function. Int. J. Contemp. Math. Sci. 9(1-4), 1–10 (2014)

    MathSciNet  Google Scholar 

  9. Chan, S.H.: Some congruences for Andrews–Paule’s broken 2-diamond partitions. Discrete Math. 308(23), 5735–5741 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Cho, B., Koo, J.K., Park, Y.K.: Arithmetic of the Ramanujan–Göllnitz–Gordon continued fraction. J. Number Theory 129(4), 922–947 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Corteel, S., Lovejoy, J.: Overpartitions. Trans. Amer. Math. Soc. 356(4), 1623–1635 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Diamond, F., Shurman, J.: A First Course in Modular Forms. Graduate Texts in Mathematics, 228. Springer, New York (2005)

  13. Eichhorn, D.A.: Some results on the congruential and gap-theoretic study of partition functions. Ph.D. Thesis. University of Illinois at Urbana-Champaign (1999)

  14. Eichhorn, D.A., Ono, K.: Congruences for partition functions. In: Berndt, B.C., Diamond, H.G., Hildebrand, A.J. (eds.) Analytic Number Theory, Vol. 1 (Allerton Park, IL, 1995), pp. 309–321. Progr. Math., 138, Birkhäuser Boston, Boston, MA (1996)

  15. Eichhorn, D.A., Sellers, J.A.: Computational proofs of congruences for 2-colored Frobenius partitions. Int. J. Math. Math. Sci. 29(6), 333–340 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Second Edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  17. Gordon, B.: Some continued fractions of the Rogers–Ramanujan type. Duke Math. J. 32, 741–748 (1965)

    MathSciNet  MATH  Google Scholar 

  18. Hardy, G.H.: Note on Ramanujan’s arithmetic function \(\tau (n)\). Proc. Cambridge Philos. Soc. 23, 675–680 (1927)

    MATH  Google Scholar 

  19. Hardy, G.H.: A further note on Ramanujan’s arithmetic function \(\tau (n)\). Proc. Cambridge Philos. Soc. 34, 309–315 (1938)

    MATH  Google Scholar 

  20. Hemmecke, R.: Dancing samba with Ramanujan partition congruences. J. Symbolic Comput. 84, 14–24 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Hirschhorn, M.D.: On the expansion of Ramanujan’s continued fraction. Ramanujan J. 2(4), 521–527 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Hirschhorn, M.D.: On the expansion of a continued fraction of Gordon. Ramanujan J. 5(4), 369–375 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Hirschhorn, M.D., Roselin: On the 2-, 3-, 4- and 6-dissections of Ramanujan’s cubic continued fraction and its reciprocal. In: Baruah, N.D., Berndt, B.C., Cooper, S., Huber, T., Schlosser, M.J. (eds.) Ramanujan Rediscovered, pp. 125–138. Ramanujan Math. Soc. Lect. Notes Ser., 14, Ramanujan Math. Soc., Mysore (2010)

  24. Hirschhorn, M.D., Sellers, J.A.: Arithmetic relations for overpartitions. J. Combin. Math. Combin. Comput. 53, 65–73 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Knopp, M.: Modular Functions in Analytic Number Theory. Second Edition. Amer. Math. Soc., Chelsea Publishing (1993)

  26. Kolberg, O.: Some identities involving the partition function. Math. Scand. 5, 77–92 (1957)

    MathSciNet  MATH  Google Scholar 

  27. Lewis, R., Liu, Z.-G.: A conjecture of Hirschhorn on the 4-dissection of Ramanujan’s continued fraction. Ramanujan J. 4(4), 347–352 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Newman, M.: Construction and application of a class of modular functions. Proc. London. Math. Soc. (3) 7, 334–350 (1957)

    MathSciNet  MATH  Google Scholar 

  29. Newman, M.: Construction and application of a class of modular functions II. Proc. Lond. Math. Soc. (3) 9, 373–387 (1959)

    MathSciNet  MATH  Google Scholar 

  30. Paule, P., Radu, C.-S.: A unified algorithmic framework for Ramanujan’s congruences modulo powers of 5, 7, and 11. Preprint (2018)

  31. Paule, P., Radu, C.-S.: A new witness identity for \(11|p(11n + 6)\). In: Andrews, G.E., Garvan, F. (eds.) Analytic Number Theory, Modular Forms and \(q\)-Hypergeometric Series, Springer Proc. Math. Stat., 221, pp. 625–639. Springer, Cham (2017)

    Google Scholar 

  32. Paule, P., Radu, S.: Partition analysis, modular functions, and computer algebra. In: Beveridge, A., Griggs, J.R., Hogben, L., Musiker, G., Tetali, P. (eds.) Recent Trends in Combinatorics, IMA Vol. Math. Appl., 159, pp. 511–543. Springer, Cham (2016)

    Google Scholar 

  33. Rademacher, H.: The Ramanujan identities under modular substitutions. Trans. Amer. Math. Soc. 51, 609–636 (1942)

    MathSciNet  MATH  Google Scholar 

  34. Rademacher, H.: Topics in Analytic Number Theory. Die Grundlehren der mathematischen Wissenschaften, Band 169. Springer-Verlag, New York-Heidelberg (1973)

    Google Scholar 

  35. Radu, C.-S.: An algorithmic approach to Ramanujan–Kolberg identities. J. Symbolic Comput. 68(1), 225–253 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Radu, S.: An algorithmic approach to Ramanujan’s congruences and related problems. Ph.D. Thesis. Research Institute for Symbolic Computation Johannes Kepler University, Linz (2009)

  37. Radu, S.: An algorithmic approach to Ramanujan’s congruences. Ramanujan J. 20(2), 215–251 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Ramanujan, S.: Some properties of \(p(n)\), the number of partitions of \(n\). Proc. Cambridge Philos. Soc. 19, 207–210 (1919)

    MATH  Google Scholar 

  39. Ramanujan, S.: On certain arithmetical functions. Trans. Cambridge Philos. Soc. 22, 159–184 (1916)

    Google Scholar 

  40. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa Publishing House, New Delhi (1988)

    MATH  Google Scholar 

  41. Robins, S.: Generalized Dedekind \(\eta \)-products. In: Andrews, G.E., Bressoud, D.M., Parson, L.A. (eds.) The Rademacher Legacy to Mathematics (University Park, PA, 1992), Contemp. Math., 166, pp. 119–128. Amer. Math. Soc., Providence, RI (1994)

  42. Rogers, L.J.: Second memoir on the expansion of certain infinite products. Proc. London Math. Soc. 25, 318–343 (1894)

    MathSciNet  Google Scholar 

  43. Schoeneberg, B.: Elliptic Modular Functions: An Introduction. Die Grundlehren der mathematischen Wissenschaften, Band 203. Springer-Verlag, New York-Heidelberg (1974)

    Google Scholar 

  44. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester (1986)

    MATH  Google Scholar 

  45. Shen, E.Y.Y.: Arithmetic properties of \(l\)-regular overpartitions. Int. J. Number Theory 12(3), 841–852 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Smoot, N.A.: An implementation of Radu’s Ramanujan–Kolberg algorithm. RISC Technical Report (2019)

  47. Srivastava, B.: On 2-dissection and 4-dissection of Ramanujan’s cubic continued fraction and identities. Tamsui Oxf. J. Math. Sci. 23(3), 305–315 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Stein, W.: Modular Forms, A Computational Approach. Graduate Studies in Mathematics, 79. Amer. Math. Soc., Providence, RI (2007)

  49. Xia, E.X.W., Yao, X.M.: The 8-dissection of the Ramanujan–Göllnitz–Gordon continued fraction by an iterative method. Int. J. Number Theory 7(6), 1589–1593 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Zuckerman, H.S.: Identities analogous to Ramanujan’s identities involving the partition function. Duke Math. J. 5(1), 88–110 (1939)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Peter Paule for his inspiring lectures and for stimulating discussions. We would also like to thank the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Y. C. Chen.

Additional information

Dedicated to Professor George E. Andrews on the occasion of his 80th birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W.Y.C., Du, J.Q.D. & Zhao, J.C.D. Finding Modular Functions for Ramanujan-Type Identities. Ann. Comb. 23, 613–657 (2019). https://doi.org/10.1007/s00026-019-00457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-019-00457-4

Mathematics Subject Classification

Keywords

Navigation