Skip to main content
Log in

Partitions into Distinct Parts Modulo Powers of 5

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

If \(p_D(n)\) denotes the number of partitions of n into distinct parts, it is known that for \(\alpha \ge 1\) and \(n\ge 0\),

$$\begin{aligned} p_D\left( 5^{2\alpha +1}n+\frac{5^{2\alpha +2}-1}{24}\right) \equiv 0\pmod {5^\alpha }. \end{aligned}$$

We give a completely elementary proof of this fact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baruah, N.D., Begum, N.M.: Exact generating functions for the number of partitions into distinct parts. Int. J. Number Theory 14(7), 1995–2011 (2018)

    Article  MathSciNet  Google Scholar 

  2. Chern, S., Tang, D.: Representations involving the Rogers–Ramanujan continued fraction and their applications (submitted)

  3. Gordon, B., Hughes, K.: Ramanujan congruences for \(q(n)\). In: Analytic Number Theory (Philadelphia, Pa., 1980), Lecture Notes in Mathematics, Vol. 899, pp. 333–359. Springer, Berlin-New York (1981)

  4. Hirschhorn, M.D.: The Power of \(q\). Developments in Mathematics. Vol. 49. Springer, Cham (2017)

  5. Lovejoy, J.: The number of partitions into distinct parts modulo powers of \(5\). Bull. London Math. Soc. 35(1), 41–46 (2003)

    Article  MathSciNet  Google Scholar 

  6. Rødseth, Ø.: Congruence properties of the partition functions \(q(n)\) and \(q_0(n)\). Arbok Univ. Bergen Mat.-Natur. Ser. 1969(13), 3–27 (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Hirschhorn.

Additional information

Dedicated to George E. Andrews on the occasion of his 80th Birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We provide a proof of (4.2). The proofs of (4.3)–(4.6), (5.6)–(5.10) and (5.12)–(5.16) are similar but lengthier.

We require the following results.

Lemma 9.1

Let

$$\begin{aligned} K=\frac{\chi (-q^5)^5}{\chi (-q)}. \end{aligned}$$

Then

$$\begin{aligned}&\displaystyle \frac{R(q^2)}{R(q)^2}-\frac{R(q)^2}{R(q^2)} =\frac{4q}{K}, \end{aligned}$$
(9.1)
$$\begin{aligned}&\displaystyle \frac{1}{R(q)R(q^2)^2}-q^2R(q)R(q^2)^2 =K, \end{aligned}$$
(9.2)
$$\begin{aligned}&\displaystyle \frac{R(q)}{R(q^2)^3}+q^2\frac{R(q^2)^3}{R(q)} =K-2q+\frac{4q^2}{K}, \end{aligned}$$
(9.3)
$$\begin{aligned}&\displaystyle \frac{1}{R(q)^3R(q^2)}+q^2R(q)^3R(q^2) =K+2q+\frac{4q^2}{K}, \end{aligned}$$
(9.4)
$$\begin{aligned}&\displaystyle \frac{1}{R(q)^5}-q^2R(q)^5 =K+4q+\frac{8q^2}{K}+\frac{16q^3}{K^2}, \end{aligned}$$
(9.5)
$$\begin{aligned}&\displaystyle \frac{R(q^2)}{R(q)^7}+q^2\frac{R(q)^7}{R(q^2)}=K+6q+\frac{20q^2}{K}+\frac{32q^3}{K^2}+\frac{64q^4}{K^3}, \end{aligned}$$
(9.6)
$$\begin{aligned}&\displaystyle \frac{1}{R(q)^{10}}+q^4R(q)^{10} =K^2+8qK+34q^2+\frac{96q^3}{K}\nonumber \\&\displaystyle \quad +\frac{192q^4}{K^2}+\frac{2546q^5}{K^3}+\frac{256q^6}{K^4}, \end{aligned}$$
(9.7)
$$\begin{aligned}&\displaystyle \frac{1}{R(q)^8R(q^2)}-q^4R(q)^8R(q^2) =K^2+6qK+20q^2+\frac{44q^3}{K}+\frac{64q^4}{K^2}+\frac{64q^5}{K^3}, \end{aligned}$$
(9.8)
$$\begin{aligned}&\displaystyle \frac{R(q^2)}{R(q)^{12}}-q^4\frac{R(q)^{12}}{R(q^2)} =K^2+10qK+52q^2+\frac{180q^3}{K}+\frac{448q^4}{K^2}\nonumber \\&\displaystyle \quad +\frac{832q^5}{K^3}+\frac{1024q^6}{K^4}+\frac{1024q^7}{K^5}, \end{aligned}$$
(9.9)
$$\begin{aligned}&\displaystyle K+q =\frac{E(q^2)^4E(q^5)^2}{E(q)^2E(q^{10})^4}, \end{aligned}$$
(9.10)
$$\begin{aligned}&\displaystyle 1-\frac{4q}{K} =\frac{E(q)^4E(q^{10})^2}{E(q^2)^2E(q^5)^4} \end{aligned}$$
(9.11)

and

$$\begin{aligned} \frac{q}{K-4q}=\zeta . \end{aligned}$$
(9.12)

Proofs of (9.1)–(9.4)

We see that (9.1) is (2.5), (9.2) is (2.7), (9.3) is (2.9) and (9.4) is (2.10). \(\square \)

Proof of (9.5)

$$\begin{aligned} \frac{1}{R(q)^5}-q^2R(q^5)&=\left( \frac{R(q^2)}{R(q)^2}-\frac{R(q)^2}{R(q^2)}\right) \left( \frac{1}{R(q)^3R(q^2)}+q^2R(q)^3R(q^2)\right) \\&\qquad +\left( \frac{1}{R(q)R(q^2)^2}-q^2R(q)R(q^2)^2\right) \\&=\frac{4q}{K}\left( K+2q+\frac{4q^2}{K}\right) +K\\&=K+4q+\frac{8q^2}{K}+\frac{16q^3}{K^2}. \end{aligned}$$

\(\square \)

Proof of (9.6)

$$\begin{aligned} \frac{R(q^2)}{R(q)^7}+q^2\frac{R(q)^7}{R(q^2)}&=\left( \frac{R(q^2)}{R(q)^2}-\frac{R(q)^2}{R(q^2)}\right) \left( \frac{1}{R(q)^5}-q^2R(q)^5\right) \\&\quad +\left( \frac{1}{R(q)^3R(q^2)}+q^2R(q)^3R(q^2)\right) \\&=\frac{4q}{K}\left( K+4q+\frac{8q^2}{K}+\frac{16q^3}{K^2}\right) +\left( K+2q+\frac{4q^2}{K}\right) \\&=K+6q+\frac{20q^2}{K}+\frac{32q^3}{K^2}+\frac{64q^4}{K^3}. \end{aligned}$$

\(\square \)

Proof of (9.7)

$$\begin{aligned} \frac{1}{R(q)^{10}}+q^4R(q)^{10}&=\left( \frac{1}{R(q)^5}-q^2R(q)^5\right) ^2+2q^2\\&=\left( K+4q+\frac{8q^2}{K}+\frac{16q^3}{K^2}\right) ^2+2q^2\\&=K^2+8qK+34q^2+\frac{96q^3}{K}+\frac{192q^4}{K^2}+\frac{256q^5}{K^3}+\frac{256q^7}{K^4}. \end{aligned}$$

\(\square \)

Proof of (9.8)

$$\begin{aligned}&\frac{1}{R(q)^8R(q^2)}-q^4R(q)^8R(q^2)\\&\quad =\left( \frac{1}{R(q)^5}-q^2R(q)^5\right) \left( \frac{1}{R(q)^3R(q^2)}+q^2R(q)^3R(q^2)\right) \\&\qquad -q^2\left( \frac{R(q^2)}{R(q)^2}-\frac{R(q)^2}{R(q^2)}\right) \\&\quad =\left( K+4q+\frac{8q^2}{K}+\frac{16q^3}{K^2}\right) \left( K+2q+\frac{4q^2}{K}\right) -q^2\left( \frac{4q}{K}\right) \\&\quad =K^2+6qK+20q^2+\frac{44q^3}{K}+\frac{64q^4}{K^2}+\frac{64q^5}{K^3}. \end{aligned}$$

\(\square \)

Proof of (9.9)

$$\begin{aligned}&\frac{R(q^2)}{R(q)^{12}}-q^4\frac{R(q)^{12}}{R(q^2)}\\&\quad =\left( \frac{R(q^2)}{R(q)^2}-\frac{R(q)^2}{R(q^2)}\right) \left( \frac{1}{R(q)^{10}}+q^4R(q)^{10}\right) \\&\qquad +\left( \frac{1}{R(q)^8R(q^2)}-q^4R(q)^8R(q^2)\right) \\&\quad =\frac{4q}{K}\left( K^2+8qK+34q^2+\frac{96q^3}{K}+\frac{192q^4}{K^2}+\frac{256q^5}{K^3}+\frac{256q^5}{K^3}\right) \\&\qquad +\left( K^2+6qK+20q^2+\frac{44q^3}{K}+\frac{64q^4}{K^2}+\frac{64q^5}{K^3}\right) \\&\quad =K^2+10qK+52q^2+\frac{180q^3}{K}+\frac{448q^4}{K^2}+\frac{832q^5}{K^3}+\frac{1024q^6}{K^4}+\frac{1024q^7}{K^5}. \end{aligned}$$

\(\square \)

Proofs of (9.10) and (9.11)

We see that (9.10) is (2.11) and (9.11) is (2.12).

\(\square \)

Proof of (9.12)

$$\begin{aligned} K-4q=K\left( 1-\frac{4q}{K}\right) =\frac{E(q^2)E(q^5)^5}{E(q)E(q^{10})^5}\cdot \frac{E(q)^4E(q^{10})^2}{E(q^2)^2E(q^5)^4}=\frac{E(q)^3E(q^5)}{E(q^2)E(q^{10})^3}=\frac{q}{\zeta }, \end{aligned}$$

from which the result follows. \(\square \)

Proof of (4.2)

We start by noting that (4.2) is equivalent to

$$\begin{aligned} U(\zeta )=41\zeta +860\zeta ^2+6800\zeta ^3+24000\zeta ^4+32000\zeta ^5. \end{aligned}$$

We have

$$\begin{aligned}&U(\zeta )=U\left( q\frac{E(q^2)E(q^{10})^3}{E(q)^3E(q^5)}\right) \\&\quad =\frac{E(q^2)^3}{E(q)}\,U\left( q\frac{E(q^2)}{E(q)^3}\right) \\&\quad =\frac{E(q^2)^3}{E(q)}\,U\left( qE(q^{50})\left( \frac{1}{R(q^{10})}-q^2-q^4R(q^{10})\right) \right. \\&\qquad \left. \times \left( \frac{E(q^{25})^5}{E(q^5)^6}\right) ^3\left( \frac{1}{R(q^5)^4}+\frac{q}{R(q^5)^3}+\frac{2q^2}{R(q^5)^2}+\frac{3q^3}{R(q^5)}+5q^4\right. \right. \\&\qquad \left. \left. -3q^5R(q^5)+2q^6R(q^5)^2-q^7R(q^5)^3+q^8R(q^5)^4\right) ^3\right) \\&\quad =\frac{E(q^2)^3E(q^5)^{15}E(q^{10})}{E(q)^{19}}\left( 51q\left( \frac{1}{R(q)^8R(q^2)}-q^4R(q)^8R(q^2)\right) \right. \\&\qquad \left. -9q\left( \frac{1}{R(q)^{10}}+q^4R(q)^{10}\right) -q\left( \frac{R(q^2)}{R(q)^{12}}-q^4\frac{R(q)^{12}}{R(q^2)}\right) \right. \\&\qquad \left. +153q^2\left( \frac{1}{R(q)^3R(q^2)}+q^2R(q)^3R(q^2)\right) -177q^2\left( \frac{1}{R(q)^5}-q^2R(q)^5\right) \right. \\&\qquad \left. -78q^2\left( \frac{R(q^2)}{R(q)^7}+q^2\frac{R(q)^7}{R(q^2)}\right) -219q^3\left( \frac{R(q^2)}{R(q)^2}-\frac{R(q)^2}{R(q^2)}\right) -71q^3\right) \\&\quad =\frac{E(q^2)^3E(q^5)^{15}E(q^{10})}{E(q)^{19}}\\&\qquad \times \left( 51q\left( K^2+6qK+20q^2+\frac{44q^3}{K}+\frac{64q^4}{K^2}+\frac{64q^5}{K^3}\right) \right. \\&\qquad \left. -9q\left( K^2+8qK+34q^2+\frac{96q^3}{K}+\frac{192q^4}{K^2}+\frac{256q^5}{K^3}+\frac{256q^6}{K^4}\right) \right. \\&\qquad \left. -q\left( K^2+10qK+52q^2+\frac{180q^3}{K}+\frac{448q^4}{K^2}+\frac{832q^5}{K^3}+\frac{1024q^6}{K^4}+\frac{1024q^7}{K^5}\right) \right. \\&\qquad \left. +153q^2\left( K+2q+\frac{4q^2}{K}\right) -177q^2\left( K+4q+\frac{8q^2}{K}+\frac{16q^3}{K^2}\right) \right. \\&\qquad \left. -78q^2\left( K+6q+\frac{20q^2}{K}+\frac{32q^3}{K^2}+\frac{64q^4}{K^3}\right) -219q^3\left( \frac{4q}{K}\right) -71q^3\right) \\&\quad =\frac{E(q^2)^3E(q^5)^{15}E(q^{10})}{E(q)^{19}}\\&\qquad \times \frac{(K+q)^2(K-4q)}{K^5}(41qK^4+204q^2K^3+416q^3K^2+384q^4K+256q^5)\\&\quad =\frac{E(q^2)^3E(q^5)^{15}E(q^{10})}{E(q)^{19}}\cdot \frac{(K+q)^2(K-4q)}{K^5}\\&\qquad \times (41q(K-4q)^4+860q^2(K-4q)^3+6800q^3(K-4q)^2\\&\qquad +24000q^4(K-4q)+32000q^5)\\&\quad =\frac{E(q^2)^3E(q^5)^{15}E(q^{10})}{E(q)^{19}}\cdot \frac{(K+q)^2(K-4q)^6}{K^5}\\&\qquad \times \left( \frac{41q}{K-4q}+\frac{860q^2}{(K-4q)^2}+\frac{6800q^3}{(K-4q)^3}+\frac{24000q^4}{(K-4q)^4}+\frac{32000q^5}{(K-4q)^5}\right) \\&\quad =\left( \frac{E(q^2)^3E(q^5)^{15}E(q^{10})}{E(q)^{19}}\right) \left( \frac{E(q^2)^4E(q^5)^2}{E(q)^2E(q^{10})^4}\right) ^2 \left( \frac{E(q)^3E(q^5)}{E(q^2)E(q^{10})^3}\right) ^6 \\&\qquad \times \left( \frac{E(q)E(q^{10})^5}{E(q^2)E(q^5)^5}\right) ^5 (41\zeta +860\zeta ^2+6800\zeta ^3+24000\zeta ^4+32000\zeta ^5)\\&\quad =41\zeta +860\zeta ^2+6800\zeta ^3+24000\zeta ^4+32000\zeta ^5. \end{aligned}$$

\(\square \)

In proceeding in the same manner with proofs of (4.3)–(4.6), (5.6)–(5.10) and (5.12)–(5.16), we encounter terms of the form

$$\begin{aligned} P(\alpha ,\beta )=\frac{1}{R(q)^{\alpha +2\beta }R(q^2)^{2\alpha -\beta }}+(-1)^{\alpha +\beta }q^{2\alpha }R(q)^{\alpha +2\beta }R(q^2)^{2\alpha -\beta } \end{aligned}$$

with \(\alpha \ge 0\).

These terms can be expressed in terms of \(q,\ K\) and \(K^{-1}\) by making use of the recurrence relations

$$\begin{aligned} P(\alpha ,\beta +1)&=\frac{4q}{K}P(\alpha ,\beta )+P(\alpha ,\beta -1), \end{aligned}$$
(9.13)
$$\begin{aligned} P(\alpha +2,0)&=KP(\alpha +1,0)+q^2P(\alpha ,0) \end{aligned}$$
(9.14)

and

$$\begin{aligned} P(\alpha +2,-1)&=\left( K-2q+\frac{4q^2}{K}\right) P(\alpha +1,0)-q^2P(\alpha ,1), \end{aligned}$$
(9.15)

together with the initial values

$$\begin{aligned} P(0,0)&=2, \end{aligned}$$
(9.16)
$$\begin{aligned} P(0,1)&=\frac{R(q^2)}{R(q)^2}-\frac{R(q)^2}{R(q^2)}=\frac{4q}{K}, \end{aligned}$$
(9.17)
$$\begin{aligned} P(1,0)&=\frac{1}{R(q)R(q^2)^2}-q^2R(q)R(q^2)^2=K \end{aligned}$$
(9.18)

and

$$\begin{aligned} P(1,-1)&=\frac{R(q)}{R(q^2)^3}+q^2\frac{R(q^2)^3}{R(q)}=K-2q+\frac{4q^2}{K}. \end{aligned}$$
(9.19)

We see that (9.17) is (9.1), (9.18) is (9.2) and (9.19) is (9.3).

Proofs of (9.13)–(9.15) were given by Chern and Tang [2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chern, S., Hirschhorn, M.D. Partitions into Distinct Parts Modulo Powers of 5. Ann. Comb. 23, 659–682 (2019). https://doi.org/10.1007/s00026-019-00439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-019-00439-6

Keywords

Mathematics Subject Classification

Navigation