Skip to main content
Log in

Gaussian Binomial Coefficients with Negative Arguments

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Loeb showed that a natural extension of the usual binomial coefficient to negative (integer) entries continues to satisfy many of the fundamental properties. In particular, he gave a uniform binomial theorem as well as a combinatorial interpretation in terms of choosing subsets of sets with a negative number of elements. We show that all of this can be extended to the case of Gaussian binomial coefficients. Moreover, we demonstrate that several of the well-known arithmetic properties of binomial coefficients also hold in the case of negative entries. In particular, we show that Lucas’ theorem on binomial coefficients modulo p not only extends naturally to the case of negative entries, but even to the Gaussian case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamczewski, B., Bell, J.P., Delaygue, É.: Algebraic independence of \({G}\)-functions and congruences “á la Lucas”. 1(52). https://doi.org/10.24033/asens.2392 (2016)

    Article  MathSciNet  Google Scholar 

  2. Adamczewski, B., Bell, J.P., Delaygue, É., Jouhet, F.: Congruences modulo cyclotomic polynomials and algebraic independence for \(q\)-series. Sém. Lothar. Combin. 78B, #A54 (2017)

  3. Andrews, G.E.: \(q\)-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher. Discrete Math. 204(1-3), 15–25 (1999)

    Article  MathSciNet  Google Scholar 

  4. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11–13 (1979)

    MATH  Google Scholar 

  5. Beukers, F.: Some congruences for the Apéry numbers. J. Number Theory 21(2), 141–155 (1985)

    Article  MathSciNet  Google Scholar 

  6. Coster, M.J.: Supercongruences. Ph.D Thesis, Universiteit Leiden (1988)

  7. Désarménien, J.: Un analogue des congruences de Kummer pour les \(q\)-nombres d’Euler. European J. Combin. 3(1), 19–28 (1982)

    Article  MathSciNet  Google Scholar 

  8. Fowler, D.: The binomial coefficient function. Amer. Math. Monthly 103(1), 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Hu, H., Sun, Z.-W.: An extension of Lucas’ theorem. Proc. Amer. Math. Soc. 129(12), 3471–3478 (2001)

    Article  MathSciNet  Google Scholar 

  11. Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer-Verlag, New York (2002)

    Book  Google Scholar 

  12. Knuth, D.E.: The Art of Computer Programming. Vol. 1. Fundamental Algorithms. Third Edition. Addison-Wesley, Reading, MA (1997)

    MATH  Google Scholar 

  13. Knuth, D.E., Wilf, H.S.: The power of a prime that divides a generalized binomial coefficient. J. Reine Angew. Math. 396, 212–219 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Loeb, D.: Sets with a negative number of elements. Adv. Math. 91(1), 64–74 (1992)

    Article  MathSciNet  Google Scholar 

  15. Lucas, E.: Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull. Soc. Math. France 6, 49–54 (1878)

    Article  MathSciNet  Google Scholar 

  16. Olive, G.: Generalized powers. Amer. Math. Monthly 72, 619–627 (1965)

    Article  MathSciNet  Google Scholar 

  17. Sagan, B.E.: Congruence properties of \(q\)-analogs. Adv. Math. 95(1), 127–143 (1992)

    Article  MathSciNet  Google Scholar 

  18. Schlosser, M.J.: A noncommutative weight-dependent generalization of the binomial theorem. arXiv:1106.2112 (2011)

  19. Sprugnoli, R.: Negation of binomial coefficients. Discrete Math. 308(22), 5070–5077 (2008)

    Article  MathSciNet  Google Scholar 

  20. Straub, A.: A \(q\)-analog of Ljunggren’s binomial congruence. In: 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp. 897–902. Discrete Math. Theor. Comput. Sci. Proc., AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2011)

  21. Straub, A.: Multivariate Apéry numbers and supercongruences of rational functions. Algebra Number Theory 8(8), 1985–2007 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was completed while the first author was supported by a Summer Undergraduate Research Fellowship (SURF) through the Office of Undergraduate Research (OUR) at the University of South Alabama. We are grateful to Wadim Zudilin for helpful comments on an earlier draft of this paper, as well as to the referee who provided useful historical remarks. We also thank Boris Adamczewski, Jason P. Bell, Éric Delaygue, and Frédéric Jouhet for pointing out the connection between Theorem 7.2 and the results in [2] (see the comments included after Theorem 7.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Straub.

Additional information

Dedicated to Professor George Andrews on the occasion of his eightieth birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formichella, S., Straub, A. Gaussian Binomial Coefficients with Negative Arguments. Ann. Comb. 23, 725–748 (2019). https://doi.org/10.1007/s00026-019-00472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-019-00472-5

Keywords

Mathematics Subject Classification

Navigation