Skip to main content
Log in

Bi-material Topology Optimization Using Analysis Mesh-Independent Point-Wise Density Interpolation

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This paper extends the independent point-wise density interpolation to the bi-material topology optimization to improve the structural static or dynamic properties. In contrast to the conventional elemental density-based topology optimization approaches, this method employs an analysis-mesh-separated material density field discretization model to describe the topology evolution of bi-material structures within the design domain. To be specific, the density design variable points can be freely positioned, independently of the field points used for discretization of the displacement field. By this means, a material interface description of relatively high quality can be achieved, even when unstructured finite element meshes and irregular-shaped elements are used in discretization of the analysis domain. Numerical examples, regarding the minimum static compliance design and the maximum fundamental eigen-frequency design, are presented to demonstrate the validity and applicability of the proposed formulation and numerical techniques. It is shown that this method is free of numerical difficulties such as checkerboard patterns and the “islanding” phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng. 1988;71:197–224.

    Article  MathSciNet  Google Scholar 

  2. Bendsøe MP. Optimal shape design as a material distribution problem. Struct Optim. 1989;1:193–202.

    Article  Google Scholar 

  3. Rozvany GI, Zhou M, Birker T. Generalized shape optimization without homogenization. Struct Optim. 1992;4:250–2.

    Article  Google Scholar 

  4. Bendsøe MP, Sigmund O. Material interpolation schemes in topology optimization. Arch Appl Mech. 1999;69:635–54.

    Article  Google Scholar 

  5. Xie Y, Steven G. Evolutionary structural optimization for dynamic problems. Comput Struct. 1996;58:1067–73.

    Article  Google Scholar 

  6. Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. J Comput Phys. 2004;194:363–93.

    Article  MathSciNet  Google Scholar 

  7. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192:227–46.

    Article  MathSciNet  Google Scholar 

  8. Luo Z, Wang MY, Wang S, Wei P. A level set-parameterization method for structural shape and topology optimization. Int J Numer Methods Eng. 2008;76:1–26.

    Article  MathSciNet  Google Scholar 

  9. Luo Z, Tong L, Kang Z. A level set method for structural shape and topology optimization using radial basis functions. Comput Struct. 2009;87:425–34.

    Article  Google Scholar 

  10. Zhou S, Li W, Li Q. Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys. 2010;229:6915–30.

    Article  MathSciNet  Google Scholar 

  11. Bruns TE. Topology optimization of convection-dominated, steady-state heat transfer problems. Int J Heat Mass Transf. 2007;50:2859–73.

    Article  Google Scholar 

  12. Jeong SH, Choi DH, Yoon GH. Fatigue and static failure considerations using a topology optimization method. Appl Math Model. 2015;39:1137–62.

    Article  Google Scholar 

  13. Makihara K, Takezawa A, Shigeta D, Yamamoto Y. Power evaluation of advanced energy-harvester using graphical analysis. Mech Eng J. 2015;2:14–00444.

    Article  Google Scholar 

  14. Thomsen J. Topology optimization of structures composed of one or two materials. Struct Optim. 1992;5:108–15.

    Article  Google Scholar 

  15. Sigmund O. Design of multiphysics actuators using topology optimization-part II: two-material structures. Comput Methods Appl Mech Eng. 2001;190:6605–27.

    Article  Google Scholar 

  16. Luo Y, Kang Z. Layout design of reinforced concrete structures using two-material topology optimization with Drucker–Prager yield constraints. Struct Multidiscip Optim. 2013;47:95–110.

    Article  MathSciNet  Google Scholar 

  17. Sun S, Zhang W. Multiple objective topology optimal design of multiphase microstructures. Acta Mech Sin. 2006;38:633–8.

    Google Scholar 

  18. Sun S, Zhang W. Investigation of perimeter control methods for structural topology optimization with multiphase materials. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica. 2006;27:963–8.

    Google Scholar 

  19. Molter A, Fonseca J, Fernandez L. Simultaneous topology optimization of structure and piezoelectric actuators distribution. Appl Math Model. 2016;40:5576–88.

    Article  MathSciNet  Google Scholar 

  20. Gao T, Zhang W. A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng. 2011;88:774–96.

    Article  Google Scholar 

  21. Stegmann J, Lund E. Discrete material optimization of general composite shell structures. Int J Numer Methods Eng. 2005;62:2009–27.

    Article  Google Scholar 

  22. Long K, Wang X, Gu X. Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm. Eng Optim. 2018;50:2091–107.

    Article  MathSciNet  Google Scholar 

  23. Huang X, Xie Y. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech. 2009;43:393–401.

    Article  MathSciNet  Google Scholar 

  24. Radman A, Huang X, Xie Y. Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity. Comput Mater Sci. 2014;91:266–73.

    Article  Google Scholar 

  25. Sethian JA, Wiegmann A. Structural boundary design via level set and immersed interface methods. J Comput Phys. 2000;163:489–528.

    Article  MathSciNet  Google Scholar 

  26. Wang MY, Wang X. Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng. 2004;193:469–96.

    Article  MathSciNet  Google Scholar 

  27. Zhou P, Du J, Lü Z. A generalized DCT compression based density method for topology optimization of 2D and 3D continua. Comput Methods Appl Mech Eng. 2018;334:1–21.

    Article  MathSciNet  Google Scholar 

  28. Antonietti PF, Bruggi M, Scacchi S, Verani M. On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput Math Appl. 2017;74(5):1091–109.

    Article  MathSciNet  Google Scholar 

  29. Kang Z, Wang Y. Structural topology optimization based on non-local Shepard interpolation of density field. Comput Methods Appl Mech Eng. 2011;200:3515–25.

    Article  MathSciNet  Google Scholar 

  30. Kang Z, Wang Y. A nodal variable method of structural topology optimization based on Shepard interpolant. Int J Numer Methods Eng. 2012;90:329–42.

    Article  MathSciNet  Google Scholar 

  31. Wang Y, Kang Z, He Q. Adaptive topology optimization with independent error control for separated displacement and density fields. Comput Struct. 2014;135:50–61.

    Article  Google Scholar 

  32. He Q, Kang Z, Wang Y. A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput Mech. 2014;54:629–44.

    Article  MathSciNet  Google Scholar 

  33. Pedersen NL. Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim. 2000;20:2–11.

    Article  Google Scholar 

  34. Jensen JS. Topology optimization of dynamics problems with Padé approximants. Int J Numer Methods Eng. 2007;72:1605–30.

    Article  Google Scholar 

  35. Svanberg K. The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng. 1987;24:359–73.

    Article  MathSciNet  Google Scholar 

  36. Du J, Olhoff N. Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscip Optim. 2007;33:305–21.

    Article  Google Scholar 

  37. Pedersen NL, Nielsen AK. Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Optim. 2003;25:436–45.

    Article  Google Scholar 

  38. Jensen JS, Pedersen NL. On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib. 2006;289:967–86.

    Article  Google Scholar 

  39. Gao T, Zhang W. A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng. 2011;88(8):774–96.

    Article  Google Scholar 

  40. Luo Y, Kang Z, Yue Z. Maximal stiffness design of two-material structures by topology optimization with nonprobabilistic reliability. AIAA J. 2012;50:1993–2003.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the National Natural Science Foundation of China (11425207, U1508209) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, X., Kang, Z., Zhang, X. et al. Bi-material Topology Optimization Using Analysis Mesh-Independent Point-Wise Density Interpolation. Acta Mech. Solida Sin. 32, 698–712 (2019). https://doi.org/10.1007/s10338-019-00142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00142-2

Keywords

Navigation