Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

COMPASS and SWI/SNF complexes in development and disease

Abstract

The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG — the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes — regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolutionary conservation and composition of the COMPASS histone methyltransferase complexes.
Fig. 2: The evolutionary conservation and complex members of the SWI/SNF chromatin remodellers.
Fig. 3: Subunit switching of BAF complexes during neurogenesis.

Similar content being viewed by others

References

  1. Ingham, P. & Whittle, R. Trithorax: a new homoeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. Mol. Gen. Genet. 179, 607–614 (1980).

    Google Scholar 

  2. Ingham, P. W. Differential expression of bithorax complex genes in the absence of the extra sex combs and trithorax genes. Nature 306, 591–593 (1983).

    CAS  PubMed  Google Scholar 

  3. Ingham, P. W. Genetic control of the spatial pattern of selector gene expression in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 50, 201–208 (1985).

    CAS  PubMed  Google Scholar 

  4. Sato, T. Genetic interaction between homoeotic Sex combs reduced and Regulator of bithorax (or trithorax) genes of Drosophila melanogaster. Roux Arch. Dev. Biol. 197, 435–440 (1988).

    PubMed  Google Scholar 

  5. Krogan, N. J. et al. COMPASS, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem. 277, 10753–10755 (2002).

    CAS  PubMed  Google Scholar 

  6. Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl Acad. Sci. USA 98, 12902–12907 (2001). Together with Krogan et al. (2002), this critical study describes how COMPASS complexes were first identified biochemically in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schneider, J. et al. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol. Cell 19, 849–856 (2005).

    CAS  PubMed  Google Scholar 

  9. Wood, A. et al. Ctk complex-mediated regulation of histone methylation by COMPASS. Mol. Cell Biol. 27, 709–720 (2007).

    CAS  PubMed  Google Scholar 

  10. Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171, 34–57 (2017). This key review provides a historical perspective on both the TrxG and the PcG as well as several recent advances.

    CAS  PubMed  Google Scholar 

  11. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015). This article is an excellent review of SWI/SNF and its roles in malignancies.

    PubMed  Google Scholar 

  12. Stassen, M. J., Bailey, D., Nelson, S., Chinwalla, V. & Harte, P. J. The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech. Dev. 52, 209–223 (1995).

    CAS  PubMed  Google Scholar 

  13. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65–95 (2012).

    CAS  PubMed  Google Scholar 

  14. Piunti, A. & Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352, aad9780 (2016).

    PubMed  Google Scholar 

  15. Mohan, M. et al. The COMPASS family of H3K4 methylases in Drosophila. Mol. Cell Biol. 31, 4310–4318 (2011). This paper describes dSet1, the fly paralog of yeast Set1/COMPASS.

    CAS  PubMed  Google Scholar 

  16. Bochynska, A., Luscher-Firzlaff, J. & Luscher, B. Modes of interaction of KMT2 histone H3 lysine 4 methyltransferase/COMPASS complexes with chromatin. Cells 7, 17 (2018).

    Google Scholar 

  17. Ali, A. & Tyagi, S. Diverse roles of WDR5–RbBP5–ASH2L–DPY30 (WRAD) complex in the functions of the SET1 histone methyltransferase family. J. Biosci. 42, 155–159 (2017).

    CAS  PubMed  Google Scholar 

  18. Ernst, P. & Vakoc, C. R. WRAD: enabler of the SET1-family of H3K4 methyltransferases. Brief. Funct. Genomics 11, 217–226 (2012).

    CAS  PubMed  Google Scholar 

  19. Ardehali, M. B. et al. Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J. 30, 2817–2828 (2011). This paper characterizes dSet1 as the fly paralog of ySet1.

    CAS  PubMed  Google Scholar 

  20. Lee, J. H. & Skalnik, D. G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280, 41725–41731 (2005).

    CAS  PubMed  Google Scholar 

  21. Lee, J. H., Tate, C. M., You, J. S. & Skalnik, D. G. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J. Biol. Chem. 282, 13419–13428 (2007).

    CAS  PubMed  Google Scholar 

  22. Bledau, A. S. et al. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development 141, 1022–1035 (2014).

    CAS  PubMed  Google Scholar 

  23. Sze, C. C. et al. Coordinated regulation of cellular identity-associated H3K4me3 breadth by the COMPASS family. Sci. Adv. 6, eaaz4764 (2020).

    CAS  PubMed  Google Scholar 

  24. Rickels, R. et al. An evolutionary conserved epigenetic mark of Polycomb response elements implemented by Trx/MLL/COMPASS. Mol. Cell 63, 318–328 (2016).

    CAS  PubMed  Google Scholar 

  25. Wang, P. et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell Biol. 29, 6074–6085 (2009).

    CAS  PubMed  Google Scholar 

  26. Denissov, S. et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141, 526–537 (2014).

    CAS  PubMed  Google Scholar 

  27. Hu, D. et al. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1093–1097 (2013). This study identifies mammalian MLL2-COMPASS as responsible for deposition of H3K4me3 at bivalent promoters of developmental genes.

    CAS  PubMed  Google Scholar 

  28. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  29. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    CAS  PubMed  Google Scholar 

  30. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Russ, B. E. et al. Regulation of H3K4me3 at transcriptional enhancers characterizes acquisition of virus-specific CD8+ T cell-lineage-specific function. Cell Rep. 21, 3624–3636 (2017).

    CAS  PubMed  Google Scholar 

  33. Rada-Iglesias, A. et al. Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 11, 633–648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Alder, O. et al. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development 137, 2483–2492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiner, A. et al. Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution. Nat. Biotechnol. 34, 953–961 (2016).

    CAS  PubMed  Google Scholar 

  36. Yan, L. et al. Epigenomic landscape of human fetal brain, heart, and liver. J. Biol. Chem. 291, 4386–4398 (2016).

    CAS  PubMed  Google Scholar 

  37. Mas, G. et al. Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nat. Genet. 50, 1452–1462 (2018).

    CAS  PubMed  Google Scholar 

  38. Blanco, E., Gonzalez-Ramirez, M., Alcaine-Colet, A., Aranda, S. & Di Croce, L. The bivalent genome: characterization, structure, and regulation. Trends Genet. 36, 118–131 (2020).

    CAS  PubMed  Google Scholar 

  39. Herz, H. M. et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604–2620 (2012). This study identifies D. melanogaster Trr as the key enhancer monomethylase in flies.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, D. et al. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell Biol. 33, 4745–4754 (2013). This study shows that MLL3/4-COMPASS complexes function as major histone H3K4 monomethylases at enhancers in mammals.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, J. E. et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Smith, E. & Shilatifard, A. Enhancer biology and enhanceropathies. Nat. Struct. Mol. Biol. 21, 210–219 (2014).

    CAS  PubMed  Google Scholar 

  43. Sze, C. C. & Shilatifard, A. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. Cold Spring Harb. Perspect. Med. 6, a026427 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  46. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    CAS  PubMed  Google Scholar 

  47. Cao, K. et al. An Mll4/COMPASS–Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Sci. Adv. 4, eaap8747 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Wang, L. et al. A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism. Genes Dev. 31, 2056–2066 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ernst, P. et al. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev. Cell 6, 437–443 (2004).

    CAS  PubMed  Google Scholar 

  50. Hess, J. L., Yu, B. D., Li, B., Hanson, R. & Korsmeyer, S. J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90, 1799–1806 (1997).

    CAS  PubMed  Google Scholar 

  51. Yagi, H. et al. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 92, 108–117 (1998).

    CAS  PubMed  Google Scholar 

  52. Terranova, R., Agherbi, H., Boned, A., Meresse, S. & Djabali, M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl Acad. Sci. USA 103, 6629–6634 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cao, K. et al. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression. Genes Dev. 31, 787–801 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fang, L. et al. H3K4 methyltransferase Set1a is a key Oct4 coactivator essential for generation of Oct4 positive inner cell mass. Stem Cell 34, 565–580 (2016).

    CAS  Google Scholar 

  55. Sze, C. C. et al. Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation. Genes Dev. 31, 1732–1737 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoshii, T. et al. A non-catalytic function of SETD1A regulates cyclin K and the DNA damage response. Cell 172, 1007–1021.e17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Long, H. K., Blackledge, N. P. & Klose, R. J. ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem. Soc. Trans. 41, 727–740 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu, D. et al. Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specification. Mol. Cell 65, 460–475 e466 (2017). This paper shows the importance of the CxxC motif in recruitment of COMPASS to chromatin.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, Z., Augustin, J., Hu, J. & Jiang, H. Physical interactions and functional coordination between the core subunits of Set1/Mll complexes and the reprogramming factors. PLoS ONE 10, e0145336 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Muntean, A. G. et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17, 609–621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, J. H. & Skalnik, D. G. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol. Cell Biol. 28, 609–618 (2008).

    CAS  PubMed  Google Scholar 

  63. Wu, M. et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell Biol. 28, 7337–7344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Milne, T. A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853–863 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu, L. et al. ASH1L links histone H3 lysine 36 dimethylation to MLL leukemia. Cancer Discov. 6, 770–783 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dhar, S. S. et al. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev. 26, 2749–2762 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Y. et al. Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF. Nat. Commun. 10, 2314 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Liu, Y. et al. Structural insights into trans-histone regulation of H3K4 methylation by unique histone H4 binding of MLL3/4. Nat. Commun. 10, 36 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hu, G. et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12, 180–192 (2013).

    CAS  PubMed  Google Scholar 

  70. Palozola, K. C., Lerner, J. & Zaret, K. S. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 20, 55–64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Laprell, F., Finkl, K. & Muller, J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88 (2017).

    CAS  PubMed  Google Scholar 

  72. Reinberg, D. & Vales, L. D. Chromatin domains rich in inheritance. Science 361, 33–34 (2018).

    CAS  PubMed  Google Scholar 

  73. Liu, Y. et al. Widespread mitotic bookmarking by histone marks and transcription factors in pluripotent stem cells. Cell Rep. 19, 1283–1293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Grandy, R. A. et al. Genome-wide studies reveal that H3K4me3 modification in bivalent genes is dynamically regulated during the pluripotent cell cycle and stabilized upon differentiation. Mol. Cell Biol. 36, 615–627 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018). Together with Mashtalir et al. (2018), this study describes the ncBAF complex and its role in tumorigenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gatchalian, J. et al. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat. Commun. 9, 5139 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Neigeborn, L. & Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845–858 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stern, M., Jensen, R. & Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178, 853–868 (1984).

    CAS  PubMed  Google Scholar 

  80. Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev. 33, 936–959 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cairns, B. R., Kim, Y. J., Sayre, M. H., Laurent, B. C. & Kornberg, R. D. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl Acad. Sci. USA 91, 1950–1954 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cote, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    CAS  PubMed  Google Scholar 

  84. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992).

    CAS  PubMed  Google Scholar 

  85. Laurent, B. C., Treich, I. & Carlson, M. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7, 583–591 (1993).

    CAS  PubMed  Google Scholar 

  86. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    CAS  PubMed  Google Scholar 

  87. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI–SNF complex. EMBO J. 15, 5370–5382 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Imbalzano, A. N., Kwon, H., Green, M. R. & Kingston, R. E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481–485 (1994).

    CAS  PubMed  Google Scholar 

  89. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    CAS  PubMed  Google Scholar 

  90. Nie, Z. et al. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell Biol. 20, 8879–8888 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lemon, B., Inouye, C., King, D. S. & Tjian, R. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414, 924–928 (2001).

    CAS  PubMed  Google Scholar 

  92. Kadoch, C. et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    CAS  PubMed  Google Scholar 

  93. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b–ARF–INK4a locus. Mol. Cell Biol. 28, 3457–3464 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).

    CAS  PubMed  Google Scholar 

  95. Wilson, B. G. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc. Natl Acad. Sci. USA 106, 5187–5191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009). This study characterizes the embryonic stem cell-specific esBAF complex and its role in embryogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Staahl, B. T. et al. Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J. Neurosci. 33, 10348–10361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bachmann, C. et al. mSWI/SNF (BAF) complexes are indispensable for the neurogenesis and development of embryonic olfactory epithelium. PLoS Genet. 12, e1006274 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007). Together with Staahl et al. (2013), this paper describes the npBAF and nBAF complexes and their role in neurodevelopment in mammals, and is a key study in elucidating the role of SWI/SNF in neurogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Crosby, M. A. et al. The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol. Cell Biol. 19, 1159–1170 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, X., Zaurin, R., Beato, M. & Peterson, C. L. Swi3p controls SWI/SNF assembly and ATP-dependent H2A–H2B displacement. Nat. Struct. Mol. Biol. 14, 540–547 (2007).

    CAS  PubMed  Google Scholar 

  104. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mohrmann, L. et al. Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol. Cell Biol. 24, 3077–3088 (2004).

    CAS  PubMed  Google Scholar 

  106. Schubert, H. L. et al. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc. Natl Acad. Sci. USA 110, 3345–3350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cosma, M. P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299–311 (1999).

    CAS  PubMed  Google Scholar 

  108. Chatterjee, N. et al. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res. 39, 8378–8391 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang, J., Hsu, J. M. & Laurent, B. C. The RSC nucleosome-remodeling complex is required for Cohesin’s association with chromosome arms. Mol. Cell 13, 739–750 (2004).

    CAS  PubMed  Google Scholar 

  110. Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

    CAS  PubMed  Google Scholar 

  111. Brizuela, B. J., Elfring, L., Ballard, J., Tamkun, J. W. & Kennison, J. A. Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics 137, 803–813 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Elfring, L. K. et al. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148, 251–265 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000). This paper describes early developmental functions of BRG1 in embryogenesis.

    CAS  PubMed  Google Scholar 

  114. Alpsoy, A. & Dykhuizen, E. C. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J. Biol. Chem. 293, 3892–3903 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    CAS  PubMed  Google Scholar 

  116. Tsuchiya, E. et al. The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J. 11, 4017–4026 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yukawa, M., Katoh, S., Miyakawa, T. & Tsuchiya, E. Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Saccharomyces cerevisiae, is required for the maximal expression of early meiotic genes. Genes Cell 4, 99–110 (1999).

    CAS  Google Scholar 

  118. Imamura, Y. et al. RSC chromatin-remodeling complex is important for mitochondrial function in Saccharomyces cerevisiae. PLoS ONE 10, e0130397 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Dhillon, N. et al. DNA polymerase epsilon, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator. EMBO J. 28, 2583–2600 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Terriente-Felix, A. & de Celis, J. F. Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Dev. Biol. 329, 350–361 (2009).

    CAS  PubMed  Google Scholar 

  121. He, J. et al. Evidence for chromatin-remodeling complex PBAP-controlled maintenance of the Drosophila ovarian germline stem cells. PLoS ONE 9, e103473 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Rendina, R., Strangi, A., Avallone, B. & Giordano, E. Bap170, a subunit of the Drosophila PBAP chromatin remodeling complex, negatively regulates the EGFR signaling. Genetics 186, 167–181 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Moshkin, Y. M., Mohrmann, L., van Ijcken, W. F. & Verrijzer, C. P. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol. Cell Biol. 27, 651–661 (2007).

    CAS  PubMed  Google Scholar 

  124. Armstrong, J. A. et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21, 5245–5254 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bajpai, R. et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463, 958–962 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu, F., Flowers, S. & Moran, E. Essential role of ARID2 protein-containing SWI/SNF complex in tissue-specific gene expression. J. Biol. Chem. 287, 5033–5041 (2012).

    CAS  PubMed  Google Scholar 

  127. Huang, X., Gao, X., Diaz-Trelles, R., Ruiz-Lozano, P. & Wang, Z. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev. Biol. 319, 258–266 (2008).

    CAS  PubMed  Google Scholar 

  128. Wang, Z. et al. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev. 18, 3106–3116 (2004).

    CAS  PubMed  Google Scholar 

  129. Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast Rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA 97, 13015–13020 (2000).

    CAS  PubMed  Google Scholar 

  130. Raab, J. R., Resnick, S. & Magnuson, T. Genome-wide transcriptional regulation mediated by biochemically distinct SWI/SNF complexes. PLoS Genet. 11, e1005748 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. Weber, C. M., Hafner, A., Braun, S. M. G., Boettiger, A. N. & Crabtree, G. R. mSWI/SNF promotes distal repression by titrating polycomb dosage. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.01.29.925586v1 (2020).

    Article  Google Scholar 

  132. Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian development. Development 143, 2882–2897 (2016). This paper is a well-written review on the developmental functions of SWI/SNF complexes, as well as ISWI (imitation SWI) and CHD (chromodomain-helicase DNA-binding) proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, Y. et al. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Res. 44, 7173–7188 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Tusi, B. K. et al. Setd1a regulates progenitor B-cell-to-precursor B-cell development through histone H3 lysine 4 trimethylation and Ig heavy-chain rearrangement. FASEB J. 29, 1505–1515 (2015).

    CAS  PubMed  Google Scholar 

  136. Mallo, M. & Alonso, C. R. The regulation of Hox gene expression during animal development. Development 140, 3951–3963 (2013).

    CAS  PubMed  Google Scholar 

  137. Soshnikova, N. & Duboule, D. Epigenetic regulation of Hox gene activation: the waltz of methyls. Bioessays 30, 199–202 (2008).

    CAS  PubMed  Google Scholar 

  138. Ayton, P. et al. Truncation of the Mll gene in exon 5 by gene targeting leads to early preimplantation lethality of homozygous embryos. Genesis 30, 201–212 (2001).

    CAS  PubMed  Google Scholar 

  139. Hanson, R. D. et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc. Natl Acad. Sci. USA 96, 14372–14377 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yu, B. D., Hanson, R. D., Hess, J. L., Horning, S. E. & Korsmeyer, S. J. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc. Natl Acad. Sci. USA 95, 10632–10636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).

    CAS  PubMed  Google Scholar 

  142. Muyrers-Chen, I. et al. Expression of leukemic MLL fusion proteins in Drosophila affects cell cycle control and chromosome morphology. Oncogene 23, 8639–8648 (2004).

    CAS  PubMed  Google Scholar 

  143. Glaser, S. et al. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133, 1423–1432 (2006).

    CAS  PubMed  Google Scholar 

  144. Glaser, S. et al. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenet. Chromatin 2, 5 (2009).

    Google Scholar 

  145. Andreu-Vieyra, C. V. et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol. 8, e1000453 (2010).

    PubMed  PubMed Central  Google Scholar 

  146. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lickert, H. et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112 (2004).

    CAS  PubMed  Google Scholar 

  148. Sun, X. et al. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function. Biol. Open 7, bio029512 (2018).

    PubMed  Google Scholar 

  149. Forcales, S. V. The BAF60c-MyoD complex poises chromatin for rapid transcription. Bioarchitecture 2, 104–109 (2012).

    PubMed  PubMed Central  Google Scholar 

  150. Forcales, S. V. et al. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 31, 301–316 (2012).

    CAS  PubMed  Google Scholar 

  151. Bultman, S. J. et al. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes. Dev. 20, 1744–1754 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Alexander, J. M. et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142, 1418–1430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 17, 6979–6991 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Thompson, K. W., Marquez, S. B., Lu, L. & Reisman, D. Induction of functional Brm protein from Brm knockout mice. Oncoscience 2, 349–361 (2015).

    PubMed  PubMed Central  Google Scholar 

  155. Yan, Z. et al. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cell 26, 1155–1165 (2008). This study characterizes BAF250B function in embryonic development.

    CAS  Google Scholar 

  156. Celen, C. et al. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. eLife 6, e25730 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Wade, S. L., Langer, L. F., Ward, J. M. & Archer, T. K. miRNA-mediated regulation of the SWI/SNF chromatin remodeling complex controls pluripotency and endodermal differentiation in human ESCs. Stem Cell 33, 2925–2935 (2015).

    CAS  Google Scholar 

  158. Yoo, A. S., Staahl, B. T., Chen, L. & Crabtree, G. R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lederer, D. et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am. J. Hum. Genet. 90, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Guo, Z., Liu, F. & Li, H. J. Novel KDM6A splice-site mutation in Kabuki syndrome with congenital hydrocephalus: a case report. BMC Med. Genet. 19, 206 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Cocciadiferro, D. et al. Dissecting KMT2D missense mutations in Kabuki syndrome patients. Hum. Mol. Genet. 27, 3651–3668 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kleefstra, T. et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet. 91, 73–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Takata, A. et al. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82, 773–780 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hiraide, T. et al. De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Hum. Genet. 137, 95–104 (2018).

    CAS  PubMed  Google Scholar 

  169. Faundes, V. et al. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am. J. Hum. Genet. 102, 175–187 (2018).

    CAS  PubMed  Google Scholar 

  170. Zhu, T. et al. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Sci. Rep. 6, 26597 (2016).

    CAS  Google Scholar 

  171. Strom, S. P. et al. De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann–Steiner syndrome in two unrelated individuals identified by clinical exome sequencing. BMC Med. Genet. 15, 49 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. Jones, W. D. et al. De novo mutations in MLL cause Wiedemann–Steiner syndrome. Am. J. Hum. Genet. 91, 358–364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Zech, M. et al. Haploinsufficiency of KMT2B, encoding the lysine-specific histone methyltransferase 2B, results in early-onset generalized dystonia. Am. J. Hum. Genet. 99, 1377–1387 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Meyer, E. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat. Genet. 49, 223–237 (2017).

    CAS  PubMed  Google Scholar 

  175. Barbagiovanni, G. et al. KMT2B is selectively required for neuronal transdifferentiation, and its loss exposes dystonia candidate genes. Cell Rep. 25, 988–1001 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lim, D. A. et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529–533 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bjornsson, H. T. et al. Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci. Transl. Med. 6, 256ra135 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Carosso, G. A. et al. Precocious neuronal differentiation and disrupted oxygen responses in Kabuki syndrome. JCI Insight 4, e129375 (2019).

    PubMed Central  Google Scholar 

  179. Son, E. Y. & Crabtree, G. R. The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am. J. Med. Genet. C. Semin. Med Genet 166C, 333–349 (2014).

    PubMed  Google Scholar 

  180. Bogershausen, N. & Wollnik, B. Mutational landscapes and phenotypic spectrum of SWI/SNF-related intellectual disability disorders. Front. Mol. Neurosci. 11, 252 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. Machol, K. et al. Expanding the spectrum of BAF-related disorders: de novo variants in SMARCC2 cause a syndrome with intellectual disability and developmental delay. Am. J. Hum. Genet. 104, 164–178 (2019).

    CAS  PubMed  Google Scholar 

  182. Kosho, T., Miyake, N. & Carey, J. C. Coffin–Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing. Am. J. Med. Genet. C. Semin. Med Genet 166C, 241–251 (2014).

    PubMed  Google Scholar 

  183. Agaimy, A. & Foulkes, W. D. Hereditary SWI/SNF complex deficiency syndromes. Semin. Diagn. Pathol. 35, 193–198 (2018).

    PubMed  Google Scholar 

  184. Wieczorek, D. et al. A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum. Mol. Genet. 22, 5121–5135 (2013).

    CAS  PubMed  Google Scholar 

  185. Nicolaides, P. & Baraitser, M. An unusual syndrome with mental retardation and sparse hair. Clin. Dysmorphol. 2, 232–236 (1993).

    CAS  PubMed  Google Scholar 

  186. Santen, G. W. et al. Coffin–Siris syndrome and the BAF complex: genotype–phenotype study in 63 patients. Hum. Mutat. 34, 1519–1528 (2013).

    CAS  PubMed  Google Scholar 

  187. Tsurusaki, Y. et al. Mutations affecting components of the SWI/SNF complex cause Coffin–Siris syndrome. Nat. Genet. 44, 376–378 (2012).

    CAS  PubMed  Google Scholar 

  188. Sokpor, G., Xie, Y., Rosenbusch, J. & Tuoc, T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci. 10, 243 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. Koemans, T. S. et al. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet. 13, e1006864 (2017).

    PubMed  PubMed Central  Google Scholar 

  190. Bell, S. et al. Mutations in ACTL6B cause neurodevelopmental deficits and epilepsy and lead to loss of dendrites in human neurons. Am. J. Hum. Genet. 104, 815–834 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Wenderski, W. et al. Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proc. Natl Acad. Sci. USA 117, 10055–10066 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Rowley, J. D. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519 (1998). This classic paper overviews MLL translocations in leukaemogenesis.

    CAS  PubMed  Google Scholar 

  194. Mohan, M., Lin, C., Guest, E. & Shilatifard, A. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat. Rev. Cancer 10, 721–728 (2010).

    CAS  PubMed  Google Scholar 

  195. Bach, C., Mueller, D., Buhl, S., Garcia-Cuellar, M. P. & Slany, R. K. Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2. Oncogene 28, 815–823 (2009).

    CAS  PubMed  Google Scholar 

  196. Wang, L. et al. Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nat. Med. 24, 758–769 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Herz, H. M., Hu, D. & Shilatifard, A. Enhancer malfunction in cancer. Mol. Cell 53, 859–866 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 21, 1199–1208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang, J. et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Clark, J. et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994).

    CAS  PubMed  Google Scholar 

  203. Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18–SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. McBride, M. J. et al. The SS18–SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141 e1127 (2018). This paper describes the SS18–SSX fusion protein and how it acts as an oncogenic driver in paediatric synovial sarcomas.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Lee, J. et al. A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. Proc. Natl Acad. Sci. USA 106, 8513–8518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).

    PubMed  PubMed Central  Google Scholar 

  207. Jagani, Z. et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog–Gli pathway. Nat. Med. 16, 1429–1433 (2010).

    CAS  PubMed  Google Scholar 

  208. Mora-Blanco, E. L. et al. Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene 33, 933–938 (2014).

    CAS  PubMed  Google Scholar 

  209. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Mathur, R. et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49, 296–302 (2017).

    CAS  PubMed  Google Scholar 

  212. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Zernickel, E. et al. Targeting of BRM sensitizes BRG1-mutant lung cancer cell lines to radiotherapy. Mol. Cancer Ther. 18, 656–666 (2019).

    CAS  PubMed  Google Scholar 

  214. Pan, J. et al. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting. Nat. Genet. 51, 618–626 (2019).

    CAS  PubMed  Google Scholar 

  215. Douillet, D. et al. Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat. Genet. 52, 615–625 (2020).

    CAS  PubMed  Google Scholar 

  216. Miller, E. L. et al. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat. Struct. Mol. Biol. 24, 344–352 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Chi, T. H. et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19, 169–182 (2003).

    CAS  PubMed  Google Scholar 

  218. Pedersen, T. A., Kowenz-Leutz, E., Leutz, A. & Nerlov, C. Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev. 15, 3208–3216 (2001).

    CAS  PubMed  Google Scholar 

  219. Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).

    CAS  PubMed  Google Scholar 

  220. Stankunas, K. et al. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev. Cell 14, 298–311 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Xiong, Y. et al. Brg1 governs a positive feedback circuit in the hair follicle for tissue regeneration and repair. Dev. Cell 25, 169–181 (2013).

    CAS  PubMed  Google Scholar 

  222. Weider, M. et al. Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination. Dev. Cell 23, 193–201 (2012).

    CAS  PubMed  Google Scholar 

  223. Chaiyachati, B. H. et al. BRG1-mediated immune tolerance: facilitation of Treg activation and partial independence of chromatin remodelling. EMBO J. 32, 395–408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Jani, A. et al. A novel genetic strategy reveals unexpected roles of the Swi–Snf-like chromatin-remodeling BAF complex in thymocyte development. J. Exp. Med. 205, 2813–2825 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Laurette, P. et al. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells. eLife 4, e06857 (2015).

    PubMed Central  Google Scholar 

  226. Wiley, M. M., Muthukumar, V., Griffin, T. M. & Griffin, C. T. SWI/SNF chromatin-remodeling enzymes Brahma-related gene 1 (BRG1) and Brahma (BRM) are dispensable in multiple models of postnatal angiogenesis but are required for vascular integrity in infant mice. J Am. Heart Assoc. 4, e001972 (2015).

    PubMed  Google Scholar 

  227. Willis, M. S. et al. Functional redundancy of SWI/SNF catalytic subunits in maintaining vascular endothelial cells in the adult heart. Circ. Res. 111, e111–e122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Smith-Roe, S. L. & Bultman, S. J. Combined gene dosage requirement for SWI/SNF catalytic subunits during early mammalian development. Mamm. Genome 24, 21–29 (2013).

    CAS  PubMed  Google Scholar 

  229. Zhang, M. et al. SWI/SNF complexes containing Brahma or Brahma-related gene 1 play distinct roles in smooth muscle development. Mol. Cell Biol. 31, 2618–2631 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Xu, Y. & Fang, F. Regulatory role of Brg1 and Brm in the vasculature: from organogenesis to stress-induced cardiovascular disease. Cardiovasc. Hematol. Disord. Drug Targets 12, 141–145 (2012).

    CAS  PubMed  Google Scholar 

  231. Albini, S. et al. Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Rep. 16, 1037–1050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Banerjee, R. et al. Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics 11, 1287–1301 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Lei, I. et al. BAF250a protein regulates nucleosome occupancy and histone modifications in priming embryonic stem cell differentiation. J. Biol. Chem. 290, 19343–19352 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Krosl, J. et al. A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood 116, 1678–1684 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Lei, I., Gao, X., Sham, M. H. & Wang, Z. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. J. Biol. Chem. 287, 24255–24262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. He, L. et al. BAF200 is required for heart morphogenesis and coronary artery development. PLoS ONE 9, e109493 (2014).

    PubMed  PubMed Central  Google Scholar 

  238. Kim, J. K. et al. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol. Cell Biol. 21, 7787–7795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Schaniel, C. et al. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cell 27, 2979–2991 (2009).

    CAS  Google Scholar 

  240. Han, D. et al. SRG3, a core component of mouse SWI/SNF complex, is essential for extra-embryonic vascular development. Dev. Biol. 315, 136–146 (2008).

    CAS  PubMed  Google Scholar 

  241. Choi, J. et al. The SWI/SNF-like BAF complex is essential for early B cell development. J. Immunol. 188, 3791–3803 (2012).

    CAS  PubMed  Google Scholar 

  242. Lee, K. Y. et al. Down-regulation of the SWI/SNF chromatin remodeling activity by TCR signaling is required for proper thymocyte maturation. J. Immunol. 178, 7088–7096 (2007).

    CAS  PubMed  Google Scholar 

  243. Narayanan, R. et al. Loss of BAF (mSWI/SNF) complexes causes global transcriptional and chromatin state changes in forebrain development. Cell Rep. 13, 1842–1854 (2015).

    CAS  PubMed  Google Scholar 

  244. Tuoc, T. C. et al. Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev. Cell 25, 256–269 (2013).

    CAS  PubMed  Google Scholar 

  245. Alajem, A. et al. Differential association of chromatin proteins identifies BAF60a/SMARCD1 as a regulator of embryonic stem cell differentiation. Cell Rep. 10, 2019–2031 (2015).

    CAS  PubMed  Google Scholar 

  246. Li, S. et al. Genome-wide coactivation analysis of PGC-1α identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 8, 105–117 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Takeuchi, J. K. et al. Baf60c is a nuclear Notch signaling component required for the establishment of left–right asymmetry. Proc. Natl Acad. Sci. USA 104, 846–851 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Cai, W. et al. Coordinate nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes Dev. 27, 2332–2344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459, 708–711 (2009).

    CAS  PubMed  Google Scholar 

  250. Chi, T. H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002).

    CAS  PubMed  Google Scholar 

  251. Krasteva, V. et al. The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function. Blood 120, 4720–4732 (2012).

    CAS  PubMed  Google Scholar 

  252. Wu, J. I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007).

    CAS  PubMed  Google Scholar 

  253. Vogel-Ciernia, A. et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16, 552–561 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Guidi, C. J. et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell Biol. 21, 3598–3603 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA 97, 13796–13800 (2000). This important paper highlights the function of SWI/SNF in MRT pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Kaeser, M. D., Aslanian, A., Dong, M. Q., Yates, J. R. 3rd & Emerson, B. M. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J. Biol. Chem. 283, 32254–32263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Lee, S. et al. Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases. Proc. Natl Acad. Sci. USA 103, 15392–15397 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Lee, J. et al. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc. Natl Acad. Sci. USA 105, 19229–19234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Ang, S. Y. et al. KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development 143, 810–821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Gori, F., Friedman, L. G. & Demay, M. B. Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev. Biol. 295, 498–506 (2006).

    CAS  PubMed  Google Scholar 

  262. Xu, Z. et al. Synergistic effect of SRY and its direct target, WDR5, on Sox9 expression. PLoS ONE 7, e34327 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Tan, C. C. et al. Transcription factor Ap2δ associates with Ash2l and ALR, a trithorax family histone methyltransferase, to activate Hoxc8 transcription. Proc. Natl Acad. Sci. USA 105, 7472–7477 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Stoller, J. Z. et al. Ash2l interacts with Tbx1 and is required during early embryogenesis. Exp. Biol. Med. 235, 569–576 (2010).

    CAS  Google Scholar 

  265. Bertero, A. et al. Activin/nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes Dev. 29, 702–717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Minocha, S. et al. Epiblast-specific loss of HCF-1 leads to failure in anterior–posterior axis specification. Dev. Biol. 418, 75–88 (2016).

    CAS  PubMed  Google Scholar 

  267. Bi, Y. et al. WDR82, a key epigenetics-related factor, plays a crucial role in normal early embryonic development in mice. Biol. Reprod. 84, 756–764 (2011).

    CAS  PubMed  Google Scholar 

  268. Bertolino, P. et al. Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. Mech. Dev. 120, 549–560 (2003).

    CAS  PubMed  Google Scholar 

  269. Lemos, M. C. et al. Genetic background influences embryonic lethality and the occurrence of neural tube defects in Men1 null mice: relevance to genetic modifiers. J. Endocrinol. 203, 133–142 (2009).

    CAS  PubMed  Google Scholar 

  270. Engleka, K. A., Wu, M., Zhang, M., Antonucci, N. B. & Epstein, J. A. Menin is required in cranial neural crest for palatogenesis and perinatal viability. Dev. Biol. 311, 524–537 (2007).

    CAS  PubMed  Google Scholar 

  271. Fontaniere, S. et al. Tumour suppressor menin is essential for development of the pancreatic endocrine cells. J. Endocrinol. 199, 287–298 (2008).

    CAS  PubMed  Google Scholar 

  272. Welstead, G. G. et al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc. Natl Acad. Sci. USA 109, 13004–13009 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Cho, E. A., Prindle, M. J. & Dressler, G. R. BRCT domain-containing protein PTIP is essential for progression through mitosis. Mol. Cell Biol. 23, 1666–1673 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Kumar, A. et al. Loss of function of mouse Pax-interacting protein 1-associated glutamate rich protein 1a (Pagr1a) leads to reduced Bmp2 expression and defects in chorion and amnion development. Dev. Dyn. 243, 937–947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Kuang, S. Q. et al. Deletion of the cancer-amplified coactivator AIB3 results in defective placentation and embryonic lethality. J. Biol. Chem. 277, 45356–45360 (2002).

    CAS  PubMed  Google Scholar 

  276. Yu, X., Li, Z. & Shen, J. BRD7: a novel tumor suppressor gene in different cancers. Am. J. Transl. Res. 8, 742–748 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Shilatifard laboratory for insightful discussions and comments. In particular, they thank N. Ethen for the illustrations, E. Smith for critical review of the manuscript and M. Morgan for editing and scientific suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ali Shilatifard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks G. Cavalli, G. Crabtree and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Polycomb group (PcG) proteins

Epigenetic regulators that primarily function as transcriptional repressors through two main complexes, Polycomb repressive complex 1 (PRC1) and PRC2.

Paralogs

Two genes are considered paralogs if a gene duplication event leads to their occupation of two different positions in the genome. This is different from a homologue, which is a gene that shares sequence ancestry with another. Homologues can be paralogs or orthologues, which indicates they diverged by speciation.

Polycomb response elements

cis-Regulatory elements that act as a binding platform for both Polycomb group and Trithorax group proteins. Polycomb response elements were first identified in Drosophila melanogaster and are found in several developmentally important genes.

CpG islands

(CGIs). Regions of the genome that have a G/C-rich composition and a high density of the CpG dinucleotide. CGIs span more than 50% of the mammalian genome.

Enhanceropathies

Diseases in which the pathogenesis is driven by misregulation of enhancers.

Genomic instability

The high mutational load of a genome of particular lineage. Changes in DNA sequence, copy number variations and ploidy all contribute to genomic instability. It is typically an underlying or contributing factor to the pathologies of multiple types of diseases, including malignancies and neurodegenerative diseases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cenik, B.K., Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet 22, 38–58 (2021). https://doi.org/10.1038/s41576-020-0278-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-0278-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing