Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Temporary or removable directing groups enable activation of unstrained C–C bonds

Abstract

Carbon–carbon (C–C) bonds make up the skeletons of most organic molecules. The selective manipulation of C–C bonds offers a direct approach to editing molecular scaffolds but remains challenging. The kinetic inertness of C–C bonds can be overcome with transition-metal catalysis, which, nevertheless, relies on a substrate being highly strained or bearing a permanent directing group (DG). The driving force for C–C activation in these cases is strain relief and the formation of a stable metallocycle, respectively. Over the past two decades, a strategy has emerged that uses temporary or removable DGs to effect C–C activation of more common and less strained compounds. A variety of C–C bonds in less strained organic molecules are converted into more reactive transition-metal–carbon (M–C) bonds, enabling downstream transformations as part of diverse synthetic methods. This Review highlights catalytic approaches using temporary or removable DGs to help activate unstrained C–C bonds. The content is organized according to the temporary or removable nature of the DGs and includes applications in the synthesis of natural products or bioactive molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General strategies in C–C bond activation.
Fig. 2: Alkyl exchange by activating unstrained C–C bonds and performing olefin extrusion–insertion.
Fig. 3: Merging intramolecular arylation with activation of an unstrained C–C(O) bond.
Fig. 4: Merging C–C bond activation of ketones with Suzuki–Miyaura cross-coupling.
Fig. 5: ‘Cut-and-sew’ reactions by activating unstrained C–C bonds.
Fig. 6: Unstrained C–C bond activation enabled by 2-amino-3-picoline.
Fig. 7: Caryl–Caryl bond activation using phosphinites as removable directing groups.
Fig. 8: Activation of unstrained C–C bonds enabled by removable heterocyclic directing groups.
Fig. 9: Aromatization-promoted C–C bond activation leads to deacylative transformations of unstrained ketones.
Fig. 10: Palladium-mediated activation of unstrained Calkyl–Calkyl bonds.

Similar content being viewed by others

References

  1. Dong, G. (ed.) C–C Bond Activation (Springer, 2014).

  2. Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    CAS  Google Scholar 

  3. Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    CAS  Google Scholar 

  4. Murakami, M. (ed.) Cleavage of Carbon–Carbon Single Bonds by Transition Metals (Wiley-VCH, 2015).

  5. Chen, P.-h, Billett, B., Tsukamoto, T. & Dong, G. “Cut and sew” transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

    CAS  Google Scholar 

  6. Nairoukh, Z., Cormier, M. & Marek, I. Merging C–H and C–C bond cleavage in organic synthesis. Nat. Rev. Chem. 1, 0035 (2017).

    Google Scholar 

  7. Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017).

    CAS  Google Scholar 

  8. Song, F., Gou, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–97115 (2018).

    CAS  Google Scholar 

  9. Deng, L. & Dong, G. Carbon–carbon bond activation of ketones. Trends Chem. 2, 183–198 (2020).

    CAS  Google Scholar 

  10. Rusina, A. & Vlček, A. A. Formation of Rh(i)-carbonyl complex by the reaction with some non-alcoholic, oxygen-containing solvents. Nature 206, 295–296 (1965).

    CAS  Google Scholar 

  11. Rubin, M., Rubina, M. & Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 107, 3117–3179 (2007).

    CAS  Google Scholar 

  12. Jiao, L. & Yu, Z.-X. Vinylcyclopropane derivatives in transition-metal-catalyzed cycloadditions for the synthesis of carbocyclic compounds. J. Org. Chem. 78, 6842–6848 (2013).

    CAS  Google Scholar 

  13. Seiser, T., Saget, T., Tran, D. N. & Cramer, N. Cyclobutanes in catalysis. Angew. Chem. Int. Ed. 50, 7740–7752 (2011).

    CAS  Google Scholar 

  14. Chen, P.-h. & Dong, G. Cyclobutenones and benzocyclobutenones: versatile synthons in organic synthesis. Chem. Eur. J. 22, 18290–18315 (2016).

    CAS  Google Scholar 

  15. Mack, D. J. & Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 3, 272–286 (2013).

    CAS  Google Scholar 

  16. Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

    CAS  Google Scholar 

  17. Suggs, J. W. & Cox, S. D. Directed cleavage of sp2sp carbon–carbon bonds. J. Organomet. Chem. 221, 199–201 (1981). This paper demonstrates the first use of DGs in C–C bond activation.

    CAS  Google Scholar 

  18. Suggs, J. W. & Jun, C. H. Directed cleavage of carbon–carbon bonds by transition metals: the α-bonds of ketones. J. Am. Chem. Soc. 106, 3054–3056 (1984).

    CAS  Google Scholar 

  19. Miura, M. & Satoh, T. Catalytic processes involving β-carbon elimination. Top. Organomet. Chem. 14, 1–20 (2005).

    Google Scholar 

  20. Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).

    CAS  Google Scholar 

  21. Bhattacharya, T., Pimparkar, S. & Maiti, D. Combining transition metals and transient directing groups for C–H functionalizations. RSC Adv. 8, 19456–19464 (2018).

    CAS  Google Scholar 

  22. Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).

    CAS  Google Scholar 

  23. Rej, S. & Chatani, N. Rhodium-catalyzed C(sp2)- or C(sp3)–H bond functionalization assisted by removable directing groups. Angew. Chem. Int. Ed. 58, 8304–8329 (2019).

    CAS  Google Scholar 

  24. Jun, C.-H. & Lee, H. Catalytic carbon–carbon bond activation of unstrained ketone by soluble transition-metal complex. J. Am. Chem. Soc. 121, 880–881 (1999). This paper describes the first use of temporary DGs in the activation of unstrained C–C bonds.

    CAS  Google Scholar 

  25. Willis, M. C. Transition metal catalyzed alkene and alkyne hydroacylation. Chem. Rev. 110, 725–748 (2010).

    CAS  Google Scholar 

  26. Suggs, J. W. Activation of aldehyde carbon–hydrogen bonds to oxidative addition via formation of 3-methyl-2-aminopyridyl aldimines and related compounds: rhodium based catalytic hydroacylation. J. Am. Chem. Soc. 101, 489 (1979).

    CAS  Google Scholar 

  27. Jun, C.-H., Lee, D.-Y., Lee, H. & Hong, J.-B. A highly active catalyst system for intermolecular hydroacylation. Angew. Chem. Int. Ed. 39, 3070–3072 (2000).

    CAS  Google Scholar 

  28. Ahn, J.-A. et al. Solvent-free chelation-assisted catalytic C–C bond cleavage of unstrained ketone by rhodium(i) complexes under microwave irradiation. Adv. Synth. Catal. 348, 55–58 (2006).

    CAS  Google Scholar 

  29. Jun, C.-H., Lee, D.-Y., Kim, Y.-H. & Lee, H. Catalytic carbon–carbon bond activation of sec-alcohols by a rhodium(i) complex. Organometallics 20, 2928–2931 (2001).

    CAS  Google Scholar 

  30. Wang, D. & Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 115, 6621–6686 (2015).

    CAS  Google Scholar 

  31. Jun, C.-H., Chung, K.-Y. & Hong, J.-B. C–H and C–C bond activation of primary amines through dehydrogenation and transimination. Org. Lett. 3, 785–787 (2001).

    CAS  Google Scholar 

  32. Murakami, M., Amii, H. & Ito, Y. Selective activation of carbon–carbon bonds next to a carbonyl group. Nature 370, 540–541 (1994).

    CAS  Google Scholar 

  33. Xia, Y., Lu, G., Liu, P. & Dong, G. Catalytic activation of carbon–carbon bonds in cyclopentanones. Nature 539, 546–550 (2016). This paper demonstrates the first use of temporary DGs in the activation of C–C bonds in cyclopentanones and cyclohexanones.

    CAS  Google Scholar 

  34. Chavan, S. P. & Khatod, H. S. Enantioselective synthesis of the essential oil and pheromonal component ar-himachalene by a chiral pool and chirality induction approach. Tetrahedron Asymmetry 23, 1410–1415 (2012).

    CAS  Google Scholar 

  35. Davies, H. M. L. & Walji, A. M. Direct synthesis of (+)-erogorgiaene through a kinetic enantiodifferentiating step. Angew. Chem. Int. Ed. 44, 1733–1735 (2005).

    CAS  Google Scholar 

  36. Elford, T. G., Nave, S., Sonawane, R. P. & Aggarwal, V. K. Total synthesis of (+)-erogorgiaene using lithiation–borylation methodology, and stereoselective synthesis of each of its diastereoisomers. J. Am. Chem. Soc. 133, 16798–16801 (2011).

    CAS  Google Scholar 

  37. Mukherjee, P. & Sarkar, T. K. Heteroatom-directed Wacker oxidations. A protection-free synthesis of (−)-heliophenanthrone. Org. Biomol. Chem. 10, 3060–3065 (2012).

    CAS  Google Scholar 

  38. Hayashi, T. & Yamasaki, K. Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions. Chem. Rev. 103, 2829–2844 (2003).

    CAS  Google Scholar 

  39. Hou, S.-H., Prichina, A. Y., Zhang, M. & Dong, G. Asymmetric total syntheses of di- and sesquiterpenoids by catalytic C–C activation of cyclopentanones. Angew. Chem. Int. Ed. 59, 7848–7856 (2020).

    CAS  Google Scholar 

  40. Ochi, S., Xia, Y. & Dong, G. Asymmetric synthesis of 1-tetralones bearing a remote quaternary stereocenter through Rh-catalyzed C–C activation of cyclopentanones. Bull. Chem. Soc. Jpn. https://doi.org/10.1246/bcsj.20200147 (2020).

    Article  Google Scholar 

  41. Xia, Y., Wang, J. & Dong, G. Distal-bond-selective C–C activation of ring-fused cyclopentanones: an efficient access to spiroindanones. Angew. Chem. Int. Ed. 56, 2376–2380 (2017).

    CAS  Google Scholar 

  42. de Meijere, A., Bräse, S. & Oestreich, M. (eds) Metal-Catalyzed Cross-Coupling Reactions and More (Wiley-VCH, 2014).

  43. Matsuda, T., Makino, M. & Murakami, M. Rhodium-catalyzed addition/ring-opening reaction of arylboronic acids with cyclobutanones. Org. Lett. 6, 1257–1259 (2004).

    CAS  Google Scholar 

  44. Wang, J. et al. Direct exchange of a ketone methyl or aryl group to another aryl group through C–C bond activation assisted by rhodium chelation. Angew. Chem. Int. Ed. 51, 12334–12338 (2012).

    CAS  Google Scholar 

  45. Dennis, J. M., Compagner, C. T., Dorn, S. K. & Johnson, J. B. Rhodium-catalyzed interconversion of quinolinyl ketones with boronic acids via C–C bond activation. Org. Lett. 18, 3334–3337 (2016).

    CAS  Google Scholar 

  46. Xia, Y., Wang, J. & Dong, G. Suzuki–Miyaura coupling of simple ketones via activation of unstrained carbon–carbon bonds. J. Am. Chem. Soc. 140, 5347–5351 (2018). This work shows that aryl–carbonyl bonds in aromatic ketones can be activated via the temporary DG strategy.

    CAS  Google Scholar 

  47. Bergin, E. Cross-coupling ketones. Nat. Catal. 1, 309 (2018).

    Google Scholar 

  48. Just-Baringo, X. & Larrosa, I. Ketone C–C bond activation meets the Suzuki–Miyaura cross-coupling. Chem 4, 1203–1204 (2018).

    CAS  Google Scholar 

  49. Pérez-Rodríguez, M. et al. C–C reductive elimination in palladium complexes, and the role of coupling additives. A DFT study supported by experiment. J. Am. Chem. Soc. 131, 3650–3657 (2009).

    Google Scholar 

  50. Kakiuchi, F., Kan, S., Igi, K., Chatani, N. & Murai, S. A ruthenium-catalyzed reaction of aromatic ketones with arylboronates: a new method for the arylation of aromatic compounds via C–H bond cleavage. J. Am. Chem. Soc. 125, 1698–1699 (2003).

    CAS  Google Scholar 

  51. Dreis, A. M. & Douglas, C. J. Catalytic carbon–carbon σ bond activation: an intramolecular carbo-acylation reaction with acylquinolines. J. Am. Chem. Soc. 131, 412–413 (2009).

    CAS  Google Scholar 

  52. Wentzel, M. T., Reddy, V. J., Hyster, T. K. & Douglas, C. J. Chemoselectivity in catalytic C–C and C–H bond activation: controlling intermolecular carboacylation and hydroarylation of alkenes. Angew. Chem. Int. Ed. 48, 6121–6123 (2009).

    CAS  Google Scholar 

  53. Rong, Z.-Q., Lim, H. N. & Dong, G. Intramolecular acetyl transfer to olefins via catalytic C–C bond activation of unstrained ketones. Angew. Chem. Int. Ed. 57, 475–479 (2018).

    CAS  Google Scholar 

  54. Xia, Y., Ochi, S. & Dong, G. Two-carbon ring expansion of 1-indanones via insertion of ethylene into carbon–carbon bonds. J. Am. Chem. Soc. 141, 13038–13042 (2019).

    CAS  Google Scholar 

  55. Boussard, M.-F. et al. Preparation and pharmacological profile of 2-trifluoromethyl-benzo(8,9)-1,3-diaza-spiro(4,6)-undeca-2,8-diene and its enantiomers as new anti-obesity agents. Arzneimittelforsch. 50, 1084–1092 (2000).

    CAS  Google Scholar 

  56. Gingrich, D. E. et al. Discovery of an orally efficacious inhibitor of anaplastic lymphoma kinase. J. Med. Chem. 55, 4580–4593 (2012).

    CAS  Google Scholar 

  57. Gawaskar, S. et al. Design, synthesis, pharmacological evaluation and docking studies of GluN2B-selective NMDA receptor antagonists with a benzo[7]annulen-7-amine scaffold. ChemMedChem 12, 1212–1222 (2017).

    CAS  Google Scholar 

  58. Jun, C.-H., Lee, H. & Lim, S.-G. The C–C bond activation and skeletal rearrangement of cycloalkanone imine by Rh(i) catalysts. J. Am. Chem. Soc. 123, 751–752 (2001).

    CAS  Google Scholar 

  59. Jun, C.-H., Lee, H., Park, J.-B. & Lee, D.-Y. Catalytic activation of C–H and C–C bonds of allylamines via olefin isomerization by transition metal complexes. Org. Lett. 1, 2161–2164 (1999).

    CAS  Google Scholar 

  60. Lee, D.-Y., Kim, I.-J. & Jun, C.-H. Synthesis of cycloalkanones from dienes and allylamines through C–H and C–C bond activation catalyzed by a rhodium(i) complex. Angew. Chem. Int. Ed. 41, 3011–3033 (2002).

    Google Scholar 

  61. Lewis, L. N. Reexamination of the deuteration of phenol catalyzed by an orthometalated ruthenium complex. Inorg. Chem. 24, 4433–4435 (1985). This is a seminal work on phenol ortho-C–H activation using a temporary DG.

    CAS  Google Scholar 

  62. Lewis, L. N. & Smith, J. F. Catalytic carbon–carbon bond formation via ortho-metalated complexes. J. Am. Chem. Soc. 108, 2728–2735 (1986).

    CAS  Google Scholar 

  63. Bedford, R. B., Coles, S. J., Hursthouse, M. B. & Limmert, M. E. The catalytic intermolecular orthoarylation of phenols. Angew. Chem. Int. Ed. 42, 112–114 (2003).

    CAS  Google Scholar 

  64. Gozin, M., Weisman, A., Ben-David, Y. & Milstein, D. Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993). A description of the first activation of non-polar, unstrained C–C bonds with homogeneous catalysis.

    CAS  Google Scholar 

  65. Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols. Nat. Chem. 11, 45–51 (2019).

    CAS  Google Scholar 

  66. Ruhland, K., Obenhuber, A. & Hoffmann, S. D. Cleavage of unstrained C(sp2)–C(sp2) single bonds with Ni0 complexes using chelating assistance. Organometallics 27, 3482–3495 (2008).

    CAS  Google Scholar 

  67. Obenhuber, A. & Ruhland, K. Activation of an unstrained C(sp2)–C(sp2) single bond using chelate-bisphosphinite rhodium(i) complexes. Organometallics 30, 4039–4051 (2011).

    CAS  Google Scholar 

  68. Grein, F. Twist angles and rotational energy barriers of biphenyl and substituted biphenyls. J. Phys. Chem. A 106, 3823–3827 (2002).

    CAS  Google Scholar 

  69. Zhu, J., Chen, P.-h., Lu, G., Liu, P. & Dong, G. Ruthenium-catalyzed reductive cleavage of unstrained aryl–aryl bonds: reaction development and mechanistic study. J. Am. Chem. Soc. 141, 18630–18640 (2019).

    CAS  Google Scholar 

  70. Li, H. et al. Pyridinyl directed alkenylation with olefins via Rh(iii)-catalyzed C–C bond cleavage of secondary arylmethanols. J. Am. Chem. Soc. 133, 15244–15247 (2011).

    CAS  Google Scholar 

  71. Lei, Z.-Q. et al. Extrusion of CO from aryl ketones: Rhodium(i)-catalyzed C–C bond cleavage directed by a pyridine group. Angew. Chem. Int. Ed. 51, 2690–2694 (2012).

    CAS  Google Scholar 

  72. Chen, K. et al. Reductive cleavage of the Csp2–Csp3 bond of secondary benzyl alcohols: rhodium catalysis directed by N-containing groups. Angew. Chem. Int. Ed. 51, 9851–9855 (2012).

    CAS  Google Scholar 

  73. Lei, Z.-Q. et al. Group exchange between ketones and carboxylic acids through directing group assisted Rh-catalyzed reorganization of carbon skeletons. J. Am. Chem. Soc. 137, 5012–5020 (2015).

    CAS  Google Scholar 

  74. Ozkal, E., Cacherat, B. & Morandi, B. Cobalt(iii)-catalyzed functionalization of unstrained carbon–carbon bonds through β-carbon cleavage of alcohols. ACS Catal. 5, 6458–6462 (2015).

    CAS  Google Scholar 

  75. Dermenci, A., Coe, J. W. & Dong, G. Direct activation of relatively unstrained carbon–carbon bonds in homogeneous systems. Org. Chem. Front. 1, 567–581 (2014).

    CAS  Google Scholar 

  76. Morioka, T., Nishizawa, A., Furukawa, T., Tobisu, M. & Chatani, N. Nickel-mediated decarbonylation of simple unstrained ketones through the cleavage of carbon–carbon bonds. J. Am. Chem. Soc. 139, 1416–1419 (2017).

    CAS  Google Scholar 

  77. Zhao, T.-T., Xu, W.-H., Zheng, Z.-J., Xu, P.-F. & Wei, H. Directed decarbonylation of unstrained aryl ketones via nickel-catalyzed C–C bond cleavage. J. Am. Chem. Soc. 140, 586–589 (2018).

    CAS  Google Scholar 

  78. Ackermann, L. & Lygin, A. V. Ruthenium-catalyzed direct C–H bond arylations of heteroarenes. Org. Lett. 13, 3332–3335 (2011).

    CAS  Google Scholar 

  79. Jiang, C., Zheng, Z.-J., Yu, T.-Y. & Wei, H. Suzuki–Miyaura coupling of unstrained ketones via chelation-assisted C–C bond cleavage. Org. Biomol. Chem. 16, 7174–7177 (2018).

    CAS  Google Scholar 

  80. Jiang, C. et al. Rhodium-catalyzed Hiyama coupling reaction of unstrained ketones via C–C bond cleavage. Asian J. Org. Chem. 8, 1358–1362 (2019).

    CAS  Google Scholar 

  81. Zhong, J. et al. Rhodium-catalyzed pyridine N-oxide assisted Suzuki–Miyaura coupling reaction via C(O)–C bond activation. Org. Lett. 21, 9790–9794 (2019).

    CAS  Google Scholar 

  82. Long, Y. et al. Rhodium-catalyzed transarylation of benzamides: C–C bond vs C–N bond activation. ACS Catal. 10, 3398–3403 (2020).

    CAS  Google Scholar 

  83. Li, G., Ji, C.-L., Hong, X. & Szostak, M. Highly chemoselective, transition-metal-free transamidation of unactivated amides and direct amidation of alkyl esters by N–C/O–C cleavage. J. Am. Chem. Soc. 141, 11161–11172 (2019).

    CAS  Google Scholar 

  84. Onodera, S., Ishikawa, S., Kochi, T. & Kakiuchi, F. Direct alkenylation of allylbenzenes via chelation-assisted C–C bond cleavage. J. Am. Chem. Soc. 140, 9788–9792 (2018). The authors demonstrate here that unstrained, non-polar C–C bonds can be activated via β-carbon elimination via a removable DG.

    CAS  Google Scholar 

  85. Onodera, S., Togashi, R., Ishikawa, S., Kochi, T. & Kakiuchi, F. Catalytic, directed C–C bond functionalization of styrenes. J. Am. Chem. Soc. 142, 7345–7349 (2020).

    CAS  Google Scholar 

  86. Wang, H., Choi, I., Rogge, T., Kaplaneris, N. & Ackermann, L. Versatile and robust C–C activation by chelation-assisted manganese catalysis. Nat. Catal. 1, 993–1001 (2018).

    CAS  Google Scholar 

  87. King, R. B. & Efraty, A. Pentamethylcyclopentadienyl derivatives of transition metals. II. Synthesis of pentamethylcyclopentadienyl metal carbonyls from 5-acetyl-1,2,3,4,5-pentamethylcyclopentadiene. J. Am. Chem. Soc. 94, 3773–3779 (1972).

    CAS  Google Scholar 

  88. Crabtree, R. H., Dion, R. P., Gibboni, D. J., Mcgrath, D. V. & Holt, E. M. Carbon–carbon bond cleavage in hydrocarbons by iridium complexes. J. Am. Chem. Soc. 108, 7222–7227 (1986).

    CAS  Google Scholar 

  89. Halcrow, M. A., Urbanos, F. & Chaudret, B. Aromatization of the B-ring of 5,7-dienyl steroids by the electrophilic ruthenium fragment “[Cp*Ru]+”. Organometallics 12, 955–957 (1993).

    CAS  Google Scholar 

  90. Youn, S. W., Kim, B. S. & Jagdale, A. R. Pd-catalyzed sequential C–C bond formation and cleavage: evidence for an unexpected generation of arylpalladium(ii) species. J. Am. Chem. Soc. 134, 11308–11311 (2012).

    CAS  Google Scholar 

  91. Smits, G., Audic, B., Wodrich, M. D., Corminboeuf, C. & Cramer, N. A β-carbon elimination strategy for convenient in situ access to cyclopentadienyl metal complexes. Chem. Sci. 8, 7174–7179 (2017).

    CAS  Google Scholar 

  92. Xu, Y. et al. Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature 567, 373–378 (2019). This paper demonstrates how aromatization can be used as a driving force to achieve catalytic activation of C–C bonds in diverse, unstrained ketones.

    CAS  Google Scholar 

  93. Padwa, A. & Pearson, W. H. (eds) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products (Wiley, 2002).

  94. Tian, M., Shi, X., Zhang, X. & Fan, X. Synthesis of 4-acylpyrazoles from saturated ketones and hydrazones featured with multiple C(sp3)–H bond functionalization and C–C bond cleavage and reorganization. J. Org. Chem. 82, 7363–7372 (2017).

    CAS  Google Scholar 

  95. Candeias, N. R., Paterna, R. & Gois, P. M. P. Homologation reaction of ketones with diazo compounds. Chem. Rev. 116, 2937–2981 (2016).

    CAS  Google Scholar 

  96. Karrouchi, K. et al. Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules 23, 134 (2018).

    Google Scholar 

  97. Pérez-Gómez, M. et al. Tandem remote Csp3–H activation/Csp3–Csp3 cleavage in unstrained aliphatic chains assisted by palladium(ii). Organometallics 38, 973–980 (2019).

    Google Scholar 

  98. Xia, Y., Qiu, D. & Wang, J. Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chem. Rev. 117, 13810–13889 (2017).

    CAS  Google Scholar 

  99. Tran, V. T., Gurak, J. A. Jr, Yang, K. S. & Engle, K. M. Activation of diverse carbon–heteroatom and carbon–carbon bonds via palladium(ii)-catalysed β-X elimination. Nat. Chem. 10, 1126–1133 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank NIGMS (2R01GM109054) for the generous support of their C–C activation projects. Y.X. acknowledges start-up funding from Sichuan University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Ying Xia or Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat Rev Chem 4, 600–614 (2020). https://doi.org/10.1038/s41570-020-0218-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0218-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing