Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards a better understanding of Lewis acidic aluminium in zeolites

Abstract

Zeolites are a class of materials that are of great relevance for industrial catalysis. Several fundamental questions relating to the structure and role of the Lewis acid sites in these materials remain unanswered. Proposals for the origin of such species can broadly be classified into three categories, which have distinct structures: extra-framework, framework-associated and framework aluminium. In this Perspective, we review each of these proposals and proceed to analyse their suitability to understand experimental results. Contrary to traditional belief, the number of Lewis acid sites does not always correlate to extra-framework aluminium content. As a result, we highlight that the terms ‘extra-framework’ and ‘framework-associated’ aluminium should be used with caution. We propose how the usage of different characterization techniques can enable the closure of knowledge gaps concerning the strength, multiplicity, localization and structure of catalytically active Lewis acid sites in zeolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zeolites, from acid sites to catalytic applications.
Fig. 2: A summary of the current understanding of Lewis acidic aluminium in zeolites.
Fig. 3: Future research directions on Lewis acidic aluminium in zeolites.

Similar content being viewed by others

References

  1. Barrer, R. M. Hydrothermal Chemistry of Zeolites Vol. 269 (Academic Press, 1982).

  2. Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas, J. M. & Ramdas, S. Resolving crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR. Nature 296, 530–533 (1982).

    CAS  Google Scholar 

  3. Haag, W. O., Lago, R. M. & Weisz, P. B. The active site of acidic aluminosilicate catalysts. Nature 309, 589–591 (1984).

    CAS  Google Scholar 

  4. Martínez, A., Prieto, G., García‐Trenco, A. & Peris, E. in Zeolites and Catalysis: Synthesis, Reactions and Applications (eds Čejka, J., Corma, A. & Zones, S.) 649–685 (Wiley, 2010).

  5. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    CAS  Google Scholar 

  6. Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).

    CAS  Google Scholar 

  7. Bjørgen, M. et al. Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl. Catal. A 345, 43–50 (2008).

    Google Scholar 

  8. Minachev, K. M., Garanin, V. I., Kharlamov, V. V., Isakova, T. A. & Senderov, E. E. Catalytic properties of synthetic mordenite in the isomerization, hydrogenation, and hydroisomerization of certain hydrocarbons. Russ. Chem. Bull. 18, 1611–1615 (1969).

    Google Scholar 

  9. Jacobs, P. A., Dusselier, M. & Sels, B. F. Will zeolite‐based catalysis be as relevant in future biorefineries as in crude oil refineries? Angew. Chem. Int. Ed. 53, 8621–8626 (2014).

    CAS  Google Scholar 

  10. Moreno-Recio, M., Santamaría-González, J. & Maireles-Torres, P. Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural. Chem. Eng. J. 303, 22–30 (2016).

    CAS  Google Scholar 

  11. Dapsens, P. Y., Mondelli, C. & Pérez-Ramírez, J. Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chem. Soc. Rev. 44, 7025–7043 (2015).

    CAS  Google Scholar 

  12. Otomo, R., Yokoi, T., Kondo, J. N. & Tatsumi, T. Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural. Appl. Catal. A 470, 318–326 (2014).

    CAS  Google Scholar 

  13. Suganuma, S., Hisazumi, T., Taruya, K., Tsuji, E. & Katada, N. Influence of acidic property on catalytic activity and selectivity in dehydration of glycerol. ChemistrySelect 2, 5524–5531 (2017).

    CAS  Google Scholar 

  14. Lewis, J. D., Van de Vyver, S. & Román‐Leshkov, Y. Acid–base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew. Chem. Int. Ed. 127, 9973–9976 (2015).

    Google Scholar 

  15. Perego, C., Carati, A., Ingallina, P., Mantegazza, M. A. & Bellussi, G. Production of titanium containing molecular sieves and their application in catalysis. Appl. Catal. A 221, 63–72 (2001).

    CAS  Google Scholar 

  16. Hammond, C., Conrad, S. & Hermans, I. Simple and scalable preparation of highly active Lewis acidic Sn‐β. Angew. Chem. Int. Ed. 51, 11736–11739 (2012).

    CAS  Google Scholar 

  17. Sushkevich, V. L., Ivanova, I. I. & Taarning, E. Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver. Green. Chem. 17, 2552–2559 (2015).

    CAS  Google Scholar 

  18. Astorino, E., Peri, J. B., Willey, R. J. & Busca, G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. J. Catal. 157, 482–500 (1995).

    CAS  Google Scholar 

  19. Corma, A., Domine, M. E., Nemeth, L. & Valencia, S. Al-free Sn-beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein–Ponndorf–Verley reaction). J. Am. Chem. Soc. 124, 3194–3195 (2002).

    CAS  Google Scholar 

  20. Brus, J. et al. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics. Angew. Chem. Int. Ed. 54, 541–545 (2015).

    CAS  Google Scholar 

  21. Busca, G. Acidity and basicity of zeolites: a fundamental approach. Microporous Mesoporous Mater. 254, 3–16 (2017).

    CAS  Google Scholar 

  22. Zhang, Y. et al. Promotion of protolytic pentane conversion on H-MFI zeolite by proximity of extra-framework aluminum oxide and Brønsted acid sites. J. Catal. 370, 424–433 (2019).

    CAS  Google Scholar 

  23. Ravi, M., Sushkevich, V. L. & van Bokhoven, J. A. Lewis acidity inherent to the framework of zeolite mordenite. J. Phys. Chem. C. 123, 15139–15144 (2019).

    CAS  Google Scholar 

  24. Klinowski, J., Fyfe, C. A. & Gobbi, G. C. High-resolution solid-state nuclear magnetic resonance studies of dealuminated zeolite Y. J. Chem. Soc. Faraday Trans. 1 81, 3003–3019 (1985).

    CAS  Google Scholar 

  25. Bevilacqua, M. & Busca, G. A study of the localization and accessibility of Brønsted and Lewis acid sites of H-mordenite through the FT-IR spectroscopy of adsorbed branched nitriles. Catal. Commun. 3, 497–502 (2002).

    CAS  Google Scholar 

  26. Marques, J. P. et al. Infrared spectroscopic study of the acid properties of dealuminated BEA zeolites. Microporous Mesoporous Mater. 60, 251–262 (2003).

    CAS  Google Scholar 

  27. Yu, Z. et al. Insights into the dealumination of zeolite HY revealed by sensitivity‐enhanced 27Al DQ‐MAS NMR spectroscopy at high field. Angew. Chem. Int. Ed. 49, 8657–8661 (2010).

    CAS  Google Scholar 

  28. Catana, G., Baetens, D., Mommaerts, T., Schoonheydt, R. A. & Weckhuysen, B. M. Relating structure and chemical composition with lewis acidity in zeolites: a spectroscopic study with probe molecules. J. Phys. Chem. B 105, 4904–4911 (2001).

    CAS  Google Scholar 

  29. Woolery, G. L., Kuehl, G. H., Timken, H. C., Chester, A. W. & Vartuli, J. C. On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites 19, 288–296 (1997).

    CAS  Google Scholar 

  30. Gil, B., Zones, S. I., Hwang, S.-J., Bejblová, M. & Čejka, J. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study. J. Phys. Chem. C. 112, 2997–3007 (2008).

    CAS  Google Scholar 

  31. Jacobs, P. A. & Beyer, H. K. Evidence for the nature of true Lewis sites in faujasite-type zeolites. J. Phys. Chem. 83, 1174–1177 (1979).

    CAS  Google Scholar 

  32. Lohse, U., Löffler, E., Hunger, M., Stöckner, J. & Patzelova, V. Hydroxyl groups of the non-framework aluminium species in dealuminated Y zeolites. Zeolites 7, 11–13 (1987).

    CAS  Google Scholar 

  33. Weitkamp, J. & Puppe, L. Catalysis and Zeolites: Fundamentals and Applications (Springer Science & Business Media, 2013).

  34. Phung, T. K. & Busca, G. On the Lewis acidity of protonic zeolites. Appl. Catal. A 504, 151–157 (2015).

    CAS  Google Scholar 

  35. Derouane, E. G. et al. The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. 55, 454–515 (2013).

    CAS  Google Scholar 

  36. Shannon, R. D. et al. The nature of the nonframework aluminum species formed during the dehydroxylation of HY. J. Phys. Chem. 89, 4778–4788 (1985).

    CAS  Google Scholar 

  37. Bhering, D. L., Ramírez-Solís, A. & Mota, C. J. A. A density functional theory based approach to extraframework aluminum species in zeolites. J. Phys. Chem. B 107, 4342–4347 (2003).

    CAS  Google Scholar 

  38. Li, S. et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J. Am. Chem. Soc. 129, 11161–11171 (2007).

    CAS  Google Scholar 

  39. Dimitrijevic, R., Lutz, W. & Ritzmann, A. Hydrothermal stability of zeolites: determination of extra-framework species of HY faujasite-type steamed zeolite. J. Phys. Chem. Solids 67, 1741–1748 (2006).

    CAS  Google Scholar 

  40. Zholobenko, V. L. et al. On the possible nature of sites responsible for the enhancement of cracking activity of HZSM-5 zeolites dealuminated under mild steaming conditions. Zeolites 10, 304–306 (1990).

    CAS  Google Scholar 

  41. van Bokhoven, J. A., Koningsberger, D. C., Kunkeler, P., Van Bekkum, H. & Kentgens, A. P. M. Stepwise dealumination of zeolite βeta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J. Am. Chem. Soc. 122, 12842–12847 (2000).

    Google Scholar 

  42. Agostini, G. et al. In situ XAS and XRPD parametric Rietveld refinement to understand dealumination of Y zeolite catalyst. J. Am. Chem. Soc. 132, 667–678 (2009).

    Google Scholar 

  43. Macedo, A., Raatz, F., Boulet, R., Janin, A. & Lavalley, J. C. in Studies in Surface Science and Catalysis Vol. 37 (eds Grobet, P. J. et al.) 375–383 (Elsevier, 1988).

  44. Menezes, S. M. C. et al. Characterization of extra-framework species of steamed and acid washed faujasite by MQMAS NMR and IR measurements. Appl. Catal. A 207, 367–377 (2001).

    CAS  Google Scholar 

  45. Yi, X. et al. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites. J. Am. Chem. Soc. 140, 10764–10774 (2018).

    CAS  Google Scholar 

  46. Liu, C., Li, G., Hensen, E. J. M. & Pidko, E. A. Nature and catalytic role of extraframework aluminum in faujasite zeolite: a theoretical perspective. ACS Catal. 5, 7024–7033 (2015).

    CAS  Google Scholar 

  47. Li, G. & Pidko, E. A. The nature and catalytic function of cation sites in zeolites: a computational perspective. ChemCatChem 11, 134–156 (2019).

    CAS  Google Scholar 

  48. Bourgeat-Lami, E. et al. Study of the state of aluminium in zeolite-β. Appl. Catal. 72, 139–152 (1991).

    CAS  Google Scholar 

  49. Haouas, M., Kogelbauer, A. & Prins, R. The effect of flexible lattice aluminium in zeolite beta during the nitration of toluene with nitric acid and acetic anhydride. Catal. Lett. 70, 61–65 (2000).

    CAS  Google Scholar 

  50. Omegna, A., van Bokhoven, J. A. & Prins, R. Flexible aluminum coordination in alumino–silicates. Structure of zeolite H–USY and amorphous silica–alumina. J. Phys. Chem. B 107, 8854–8860 (2003).

    CAS  Google Scholar 

  51. Wouters, B. H., Chen, T. H. & Grobet, P. J. Reversible tetrahedral–octahedral framework aluminum transformation in zeolite Y. J. Am. Chem. Soc. 120, 11419–11425 (1998).

    CAS  Google Scholar 

  52. Abraham, A. et al. Influence of framework silicon to aluminium ratio on aluminium coordination and distribution in zeolite Beta investigated by 27Al MAS and 27Al MQ MAS NMR. Phys. Chem. Chem. Phys. 6, 3031–3036 (2004).

    CAS  Google Scholar 

  53. Busco, C., Bolis, V. & Ugliengo, P. Masked Lewis sites in proton-exchanged zeolites: a computational and microcalorimetric investigation. J. Phys. Chem. C. 111, 5561–5567 (2007).

    CAS  Google Scholar 

  54. Xu, B., Rotunno, F., Bordiga, S., Prins, R. & van Bokhoven, J. A. Reversibility of structural collapse in zeolite Y: alkane cracking and characterization. J. Catal. 241, 66–73 (2006).

    CAS  Google Scholar 

  55. Remy, M. J., Genet, M. J., Poncelet, G., Lardinois, P. F. & Notté, P. P. Investigation of dealuminated mordenites by X-ray photoelectron spectroscopy. J. Phys. Chem. 96, 2614–2617 (1992).

    CAS  Google Scholar 

  56. Collignon, F., Jacobs, P. A., Grobet, P. & Poncelet, G. Investigation of the coordination state of aluminum in β zeolites by X-ray photoelectron spectroscopy. J. Phys. Chem. B 105, 6812–6816 (2001).

    CAS  Google Scholar 

  57. Esquivel, D., Cruz-Cabeza, A. J., Jiménez-Sanchidrián, C. & Romero-Salguero, F. J. Local environment and acidity in alkaline and alkaline-earth exchanged β zeolite: structural analysis and catalytic properties. Microporous Mesoporous Mater. 142, 672–679 (2011).

    CAS  Google Scholar 

  58. van Bokhoven, J. A. In-situ Al K-edge spectroscopy on zeolites: instrumentation, data-interpretation and catalytic consequences. Phys. Scr. 2005, 76–79 (2005).

    Google Scholar 

  59. Altwasser, S., Jiao, J., Steuernagel, S., Weitkamp, J. & Hunger, M. in Studies in Surface Science and Catalysis Vol. 154 (eds van Steen, E., Claeys, M. & Callanan, L. H.) 3098–3105 (Elsevier, 2004).

  60. van Bokhoven, J. A., Van der Eerden, A. M. J. & Koningsberger, D. C. Three-coordinate aluminum in zeolites observed with in situ X-ray absorption near-edge spectroscopy at the Al K-edge: flexibility of aluminum coordinations in zeolites. J. Am. Chem. Soc. 125, 7435–7442 (2003).

    Google Scholar 

  61. Rybakov, A. A., Larin, A. V. & Zhidomirov, G. M. Influence of alkali cations on the inter-conversion of extra-framework aluminium species in dealuminated zeolites. Microporous Mesoporous Mater. 189, 173–180 (2014).

    CAS  Google Scholar 

  62. Jiao, J., Altwasser, S., Wang, W., Weitkamp, J. & Hunger, M. State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy. J. Phys. Chem. B 108, 14305–14310 (2004).

    CAS  Google Scholar 

  63. Ward, J. W. The nature of active sites on zeolites: I. The decationated Y zeolite. J. Catal. 9, 225–236 (1967).

    CAS  Google Scholar 

  64. Mirodatos, C. & Barthomeuf, D. Superacid sites in zeolites. J. Chem. Soc. Chem. Commun. 39–40 (1981).

  65. Lunsford, J. H. Surface interactions of NaY and decationated Y zeolites with nitric oxide as determined by electron paramagnetic resonance spectroscopy. J. Phys. Chem. 72, 4163–4168 (1968).

    CAS  Google Scholar 

  66. van Bokhoven, J. A. et al. An explanation for the enhanced activity for light alkane conversion in mildly steam dealuminated mordenite: the dominant role of adsorption. J. Catal. 202, 129–140 (2001).

    Google Scholar 

  67. Yu, Z. et al. Brønsted/lewis acid synergy in H-ZSM-5 and H–MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J. Phys. Chem. C. 115, 22320–22327 (2011).

    CAS  Google Scholar 

  68. Li, S. et al. Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations. Phys. Chem. Chem. Phys. 12, 3895–3903 (2010).

    CAS  Google Scholar 

  69. Dzwigaj, S. & Che, M. Incorporation of Co(ii) in dealuminated BEA zeolite at lattice tetrahedral sites evidenced by XRD, FTIR, diffuse reflectance UV–vis, EPR, and TPR. J. Phys. Chem. B 110, 12490–12493 (2006).

    CAS  Google Scholar 

  70. Hajjar, R., Millot, Y., Man, P. P., Che, M. & Dzwigaj, S. Two kinds of framework Al sites studied in BEA zeolite by X-ray diffraction, Fourier transform infrared spectroscopy, NMR techniques, and V probe. J. Phys. Chem. C. 112, 20167–20175 (2008).

    CAS  Google Scholar 

  71. Zheng, A., Li, S., Liu, S.-B. & Deng, F. Acidic properties and structure–activity correlations of solid acid catalysts revealed by solid-state nmr spectroscopy. Acc. Chem. Res. 49, 655–663 (2016).

    CAS  Google Scholar 

  72. Farneth, W. E. & Gorte, R. J. Methods for characterizing zeolite acidity. Chem. Rev. 95, 615–635 (1995).

    CAS  Google Scholar 

  73. Kao, H.-M. & Grey, C. P. Probing the Brønsted and Lewis acidity of zeolite HY: a 1H/27Al and 15N/27Al TRAPDOR NMR study of monomethylamine adsorbed on HY. J. Phys. Chem. 100, 5105–5117 (1996).

    CAS  Google Scholar 

  74. Kao, H.-M., Liu, H., Jiang, J.-C., Lin, S.-H. & Grey, C. P. Determining the structure of trimethylphosphine bound to the Brønsted acid site in zeolite HY: double-resonance NMR and ab initio studies. J. Phys. Chem. B 104, 4923–4933 (2000).

    CAS  Google Scholar 

  75. Moroz, I. B., Larmier, K., Liao, W.-C. & Copéret, C. Discerning γ-alumina surface sites with nitrogen-15 dynamic nuclear polarization surface enhanced NMR spectroscopy of adsorbed pyridine. J. Phys. Chem. C. 122, 10871–10882 (2018).

    CAS  Google Scholar 

  76. Grey, C. P. & Kumar, B. S. A. 15N/27Al double resonance NMR study of monomethylamine adsorbed on zeolite HY. J. Am. Chem. Soc. 117, 9071–9072 (1995).

    CAS  Google Scholar 

  77. Kao, H.-M. & Grey, C. P. Determination of the 31P–27Al J-coupling constant for trimethylphosphine bound to the Lewis acid site of zeolite HY. J. Am. Chem. Soc. 119, 627–628 (1997).

    CAS  Google Scholar 

  78. Hadjiivanov, K. I. & Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002).

    CAS  Google Scholar 

  79. Wischert, R., Copéret, C., Delbecq, F. & Sautet, P. Dinitrogen: a selective probe for tri-coordinate Al “defect” sites on alumina. Chem. Commun. 47, 4890–4892 (2011).

    CAS  Google Scholar 

  80. Boronat, M., Concepción, P., Corma, A., Renz, M. & Valencia, S. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J. Catal. 234, 111–118 (2005).

    CAS  Google Scholar 

  81. Jin, F. & Li, Y. A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule. Catal. Today 145, 101–107 (2009).

    CAS  Google Scholar 

  82. Moissette, A., Vezin, H., Gener, I. & Brémard, C. Generation and migration of electrons and holes during naphthalene sorption in acidic Al-ZSM-5 zeolites. J. Phys. Chem. B 107, 8935–8945 (2003).

    CAS  Google Scholar 

  83. Marquis, S., Moissette, A., Vezin, H. & Brémard, C. Long-lived radical cation–electron pairs generated by anthracene sorption in non Brønsted acidic zeolites. J. Phys. Chem. B 109, 3723–3726 (2005).

    CAS  Google Scholar 

  84. Jiao, J. et al. Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T. Phys. Chem. Chem. Phys. 7, 3221–3226 (2005).

    CAS  Google Scholar 

  85. Maier, S. M., Jentys, A. & Lercher, J. A. Steaming of zeolite BEA and its effect on acidity: a comparative NMR and IR spectroscopic study. J. Phys. Chem. C. 115, 8005–8013 (2011).

    CAS  Google Scholar 

  86. Oumi, Y. et al. Effect of the framework structure on the dealumination–realumination behavior of zeolite. Mater. Chem. Phys. 78, 551–557 (2003).

    CAS  Google Scholar 

  87. Jia, C., Massiani, P. & Barthomeuf, D. Characterization by infrared and nuclear magnetic resonance spectroscopies of calcined beta zeolite. J. Chem. Soc. Faraday Trans. 89, 3659–3665 (1993).

    CAS  Google Scholar 

  88. Dědeček, J., Tabor, E. & Sklenak, S. Tuning the aluminum distribution in zeolites to increase their performance in acid‐catalyzed reactions. ChemSusChem 12, 556–576 (2019).

    Google Scholar 

  89. Pu, X., Liu, N.-w & Shi, L. Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration. Microporous Mesoporous Mater. 201, 17–23 (2015).

    CAS  Google Scholar 

  90. Gruver, V. & Fripiat, J. J. Lewis acid sites and surface aluminum in aluminas and mordenites: an infrared study of CO chemisorption. J. Phys. Chem. 98, 8549–8554 (1994).

    CAS  Google Scholar 

  91. Janin, A. et al. FT IR study of the silanol groups in dealuminated HY zeolites: nature of the extraframework debris. Zeolites 11, 391–396 (1991).

    CAS  Google Scholar 

  92. Niwa, M., Sota, S. & Katada, N. Strong Brønsted acid site in HZSM-5 created by mild steaming. Catal. Today 185, 17–24 (2012).

    CAS  Google Scholar 

  93. Zholobenko, V. L. et al. On the nature of the sites responsible for the enhancement of the cracking activity of HZSM-5 zeolites dealuminated under mild steaming conditions: part 2. Zeolites 11, 132–134 (1991).

    CAS  Google Scholar 

  94. Anand, R., Maheswari, R. & Hanefeld, U. Catalytic properties of the novel mesoporous aluminosilicate AlTUD-1. J. Catal. 242, 82–91 (2006).

    CAS  Google Scholar 

  95. DeCanio, S. J., Sohn, J. R., Fritz, P. O. & Lunsford, J. H. Acid catalysis by dealuminated zeolite-Y: I. Methanol dehydration and cumene dealkylation. J. Catal. 101, 132–141 (1986).

    CAS  Google Scholar 

  96. Anunziata, O. A., Martínez, M. L. & Costa, M. G. Characterization and acidic properties of Al-SBA-3 mesoporous material. Mater. Lett. 64, 545–548 (2010).

    CAS  Google Scholar 

  97. Xia, Z. et al. Post synthesis of aluminum modified mesoporous TUD-1 materials and their application for FCC diesel hydrodesulfurization catalysts. Catalysts 7, 141–160 (2017).

    Google Scholar 

  98. Raatz, F., Freund, E. & Marcilly, C. Study of small-port and large-port mordenite modifications. Part 2.—Ion-exchange properties of thermally treated ammonium forms. J. Chem. Soc. Faraday Trans. 1 81, 299–310 (1985).

    CAS  Google Scholar 

  99. Kunkeler, P. J. et al. Zeolite Beta: the relationship between calcination procedure, aluminum configuration, and Lewis acidity. J. Catal. 180, 234–244 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the ESI Platform of the Paul Scherrer Institute and ETH Zurich for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen A. van Bokhoven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, M., Sushkevich, V.L. & van Bokhoven, J.A. Towards a better understanding of Lewis acidic aluminium in zeolites. Nat. Mater. 19, 1047–1056 (2020). https://doi.org/10.1038/s41563-020-0751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0751-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing