Skip to main content
Log in

Pressure-Induced Metallization of Diamond at Room Temperature

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

We use four different methods for testing the hypothesis of putative numerical equivalence between the hardness of diamond and the critical pressure of diamond metallization. In modeling crystal distortion by uniaxial compression, the initial calculations of external pressure give the lower limit for the critical pressure: Pm(1) = 213 GPa. This value is compared to semi-empirical findings obtained within Penn’s model for dielectrics, which is Pm(2) = 187.67 GPa. An experimental value for the Vickers hardness, which is HV(1) = 92 GPa, is compared using a semi-empirical approach. A theoretical value for diamond’s hardness calculated within the Penn’s model is HV(2) = 92.22 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Trefilov, V.I. and Milman, Yu.V., Specific plastic deformation of crystals with covalent bonds, Dokl. Akad. Nauk SSSR, 1963, vol. 153, pp. 824–827.

    CAS  Google Scholar 

  2. Gilman, J.J., Mechanism of shear-induced metallization, Czech. J. Phys., 1995, vol. 45, no. 12, pp. 913–919.

    Article  CAS  Google Scholar 

  3. Dub, S., Lytvyn, P., Strelchuk, V., Nikolenko, A., Stubrov, Yu., Petrusha, I., Taniguchi, T., and Ivakhnenko, S., Vickers hardness of diamond and cBN single crystals: AFM approach, Crystals, 2017, vol. 7, no. 12, 369.

    Article  Google Scholar 

  4. Ruoff, A.L. and Luo, H., Pressure strengthening: A possible route to obtaining 9 Mbar and metallic diamonds, J. Appl. Phys., 1991, vol. 70, no. 4, pp. 2066–2070.

    Article  CAS  Google Scholar 

  5. van Camp, P.E., van Doren, V.E., and Devreese, J.T., Theoretical study of diamond under strong anisotropic stresses, Solid State Commun., 1992, vol. 84, pp. 731–733.

    Article  CAS  Google Scholar 

  6. Surh, H.P., Louie, S.G., and Cohen, M.L., Band gaps of diamond under anisotropic stress, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 45, pp. 8239–8247.

  7. Nielsen, O.H., Optical phonons and elasticity of diamond at megabar stresses, Phys. Rev. B: Condens. Matter Mater. Phys., 1986, vol. 34, pp. 5808–5819.

  8. Gogotsi, Y.G., Kailer, A., and Nickel, K.G., Pressure-induced phase transformations in diamond, J. Appl. Phys., 1998, vol. 84, no. 3, pp. 1299–1304.

    Article  CAS  Google Scholar 

  9. Sichkar, S.M., Why HfB2 is not superconductor, J. Supercond. Novel Magn., 2015, vol. 28, pp. 719–724.

    Article  CAS  Google Scholar 

  10. Savrasov, S.Yu. and Savrasov, D.Yu., Full-potential linear-muffin-tin-orbital method for calculating total energies and forces, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 46, no. 19, pp. 12181–12195.

    Article  CAS  Google Scholar 

  11. von Barth, U. and Hedin, L., A local exchange-correlation potential for the spin polarized case, J. Phys. C, 1972, vol. 5, no. 13, pp. 1629–1642.

    Article  CAS  Google Scholar 

  12. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 46, no. 11, pp. 6671–6687.

    Article  CAS  Google Scholar 

  13. Blöchl, P.E., Jepsen, O., and Andersen, O.K., Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, no. 23, pp. 16223–16233.

    Article  Google Scholar 

  14. Landau, L.D. and Lifshitz, E.M., A Course of Theoretical, vol. 7: Physics Theory of Elasticity, Oxford: Pergamon, 1970.

    Google Scholar 

  15. Himpsel, F.J., van der Veen, J.F., and Eastman, D.E., Experimental bulk energy bands for diamond using hν-dependent photoemission, Phys. Rev. B: Condens. Matter Mater. Phys., 1980, vol. 22, no. 4, pp. 1967–1971.

    Article  CAS  Google Scholar 

  16. Clark, C.D., Dean, P.J., and Harris, P.V., Intrinsic edge absorption in diamond, Proc. R. Soc. A, 1964, vol. 277, no. 1370, pp. 312–329.

    CAS  Google Scholar 

  17. Calzaferri, G. and Rytz, R., The band structure of diamond, J. Phys. Chem., 1996, vol. 100, no. 26, pp. 11122–11124.

    Article  CAS  Google Scholar 

  18. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series, Madelung, O., Ed., New York: Springer, 1982.

    Google Scholar 

  19. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S., Eds., New York: Wiley, 2001.

    Google Scholar 

  20. Cohen, M.L. and Heine, V., The fitting of pseudopotentials to experimental data and their subsequent application, Solid State Phys., 1970, vol. 24, pp. 37–248.

    Article  CAS  Google Scholar 

  21. Panling, L., The Nature of the Chemical Bond, Ithaca, NY: Cornell Univ. Press, 1980, 3rd ed.

    Google Scholar 

  22. Philipp, H.R. and Ehrenreich, H., Optical properties of semiconductors, Phys. Rev. B: Solid State, 1963, vol. 129, no. 4, pp. 1550–1560.

    Article  CAS  Google Scholar 

  23. Lee, S., Dehesa, S., and Dow, J.D., Theoretical investigation of the pressure dependences of energy gaps in semiconductors, Phys. Rev. B: Condens. Matter Mater. Phys., 1985, vol. 32, no. 2, pp. 1152–1155.

    Article  CAS  Google Scholar 

  24. McSkimin, H.J. and Bond, W.L., Elastic moduli of diamond, Phys. Rev. B: Solid State, 1957, vol. 105, pp. 116–120.

    Article  CAS  Google Scholar 

  25. Gilman, J.J., Why diamond is very hard, Philos. Mag. A, 2002, vol. 82, no. 10, pp. 1811–1820.

    Article  CAS  Google Scholar 

  26. Penn, D.R., Wave-number-dependent dielectric function of semiconductors, Phys. Rev. B: Solid State, 1962, vol. 128, pp. 2093–2097.

    Article  CAS  Google Scholar 

  27. Gao, F.M., He, J.L., and Wu, E.D., Hardness of covalent crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, 015502.

    Article  Google Scholar 

  28. Phillips, J.C., Ionicity of the chemical bond in crystals, Rev. Mod. Phys., 1970, vol. 42, pp. 317–321.

    Article  CAS  Google Scholar 

  29. The Science of Hardness Testing and Its Research Applications, Westbrook, J.H. and Conrad, H., Eds., Metals Park, OH: ASM Int., 1973.

    Google Scholar 

  30. Siethoff, H., Homopolar band gap and thermal activation parameters of plasticity of diamond and zinc-blende semiconductors, J. Appl. Phys., 2000, vol. 87, p. 3301.

    Article  CAS  Google Scholar 

  31. van Vechten, J.A., Quantum dielectric theory of electronegativity in covalent systems. III. Pressure-temperature phase diagrams, heats of mixing, and distribution coefficients, Phys. Rev. B: Solid State, 1973, vol. 7, no. 7, pp. 1479–1507.

    Article  CAS  Google Scholar 

  32. Jamieson, J.C., Crystal structures at high pressures of metallic modifications of silicon and germanium, Science, 1963, vol. 139, pp. 762–766.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sichkar.

Additional information

Translated by A. Kukharuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sichkar, S.M. Pressure-Induced Metallization of Diamond at Room Temperature. J. Superhard Mater. 42, 177–189 (2020). https://doi.org/10.3103/S1063457620030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620030089

Keywords

Navigation