Skip to main content
Log in

Theory and Practice of Mesostructure Formation in Composite Materials. A Review

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract—The scientific foundations for mesostructure formation in composite materials have been developed. These materials are divided into four structural classes, and structure formation in each class possesses some unique features. The conditions for the formation of equilibrium mesostructures and the distinctive features of liquid phase mass transfer upon the interaction of the mesoelements and the matrix have been assessed in thermodynamics studies, and the conditions of mesostructure generation in composite nanomaterials have been substantiated. The distinctive features of mesocomposite material formation have been considered for each of the classes identified. Mesostructure generation in composite materials has been shown to enable a substantial improvement of the properties and performance characteristics of these materials and thus ensure breakthroughs in different fields of technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Brookes, K.J.A., World Directory and Handbook of Hardmetals and Hard Materials, East Barnet: International Carbide Data, 1992, 5th ed.

  2. Chaurasia, J., Ayyapan, M., Patel, P., and Rajan, R.A.A., Activated sintering of tungsten heavy alloy, Sci. Sintering, 2017, vol. 49, pp. 445–453.

    Article  CAS  Google Scholar 

  3. Flis, A.A., Minakova, R.V., Teodorovich, O.K., Vorona, D.S., and Antoshina, R.I., Tungsten carbide pseudoalloys and their potential applications, Sov. Powder Metall. Met. Ceram., 1980, vol. 19, no. 2, pp. 112–117.

    Article  Google Scholar 

  4. Lesnik, N.D., Minakova, R.V., and Khomenko, E.V., Chromium–copper system: Adhesion characteristics, alloying, and structure of composite materials, Poroshk. Metall., 2001, nos. 7–8, pp. 137–147.

  5. Bondarenko, N.A., Zhukovskii, A.N., and Mechnik, V.A., Osnovy sozdaniya almazosoderzhashchikh kompozitsionnykh materialov dlya porodorazrushayushchikh instrumentov (Creation of Diamond-Containing Composites for Mineral Destroying Tools), Kyiv: Inst. Sverkhtverd. Mater., Nats. Akad. Nauk Ukr., 2008.

  6. Mechnik, V.A., Production of diamond–(Fe–Cu–Ni–Sn) composites with high wear resistance, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 9–10, pp. 577–587.

    Article  CAS  Google Scholar 

  7. Bondarenko, V.P., Tribotekhnicheskie kompozity s vysokomodul’nymi napolnitelyami (Tribological Composites with High Modular Fillaers), Kiev: Naukova Dumka, 1987.

  8. Chmielewski, M., Pietrzak, K., Strojny-Nędza, A., Kaszyca, K., Zybała, R., Bazarnik, P., Lewandowska, M., and Nosewicz, S., Microstructure and thermal properties of Cu–SiC composite materials depending on the sintering technique, Sci. Sintering, 2017, vol. 49, pp. 11–22.

    Article  CAS  Google Scholar 

  9. Vlasova, M., Bykov, A., Kakazey, M., Aguilar, P.A.M., Melnikov, I., Rosales, I., and Tapia, R.G., Formation and properties of TiB2–Ni composite ceramics, Sci. Sintering, 2016, vol. 48, pp. 137–146.

    Article  CAS  Google Scholar 

  10. Deng, X., Patterson, D.R., Chawla, K.K., Koopman, M.C., Fang, Z., Lockwood, G., and Griffo, A., Mechanical properties of a hybrid cemented carbide composite, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, pp. 547–552.

    Article  CAS  Google Scholar 

  11. Bondar’, M.P., Korchagin, M.A., and Obodovskii, E.S., High-energy methods of creating a mesocomposite material with inclusions containing nanocrystalline particles, Combust., Explos. Shock Waves (Engl. Transl.), 2010, vol. 46, no. 1, pp. 111–116.

  12. Lisovsky, A.F., Thermodynamics of the formation of mesostructures in composite materials, Fiz. Mezomekh., 2011, vol. 14, no. 4, pp. 11–16.

    CAS  Google Scholar 

  13. Lisovsky, A.F., Formation of nonequilibrium dihedral angles in composite materials, J. Int. Powder Metall., 1990, vol. 26, no. 1, pp. 45–49.

    Google Scholar 

  14. Lisovsky, A.F., Some problems on technical use of the phenomenon of metal melts imbibition of sintered composites, Powder Metall. Int., 1989, vol. 21, no. 6, pp. 7–9.

    Google Scholar 

  15. Lisovsky, A.F., The phenomenon of absorption of metal melts by non-porous composite materials: Scientific substantiation and practical application, Sverkhtverd. Mater., 2001, no. 1, pp. 3–10.

  16. Lisovsky, A.F., Thermodynamics of processes of consolidation of an assembly of dispersed particles and deconsolidation of a polycrystalline body, Sci. Sintering, 2002, vol. 34, no. 2, pp. 135–142.

    Article  CAS  Google Scholar 

  17. Lisovsky, A.F., Deconsolidation of polycrystalline skeletons in sintered composite materials, Mater. Sci. Forum, 2009, vol. 623, pp. 43–56.

  18. Lisovsky, A.F., Formirovanie struktury kompozitsionnykh materialov pri obrabotke metallicheskimi rasplavami (Formation of Structure of Composite Materials during Processing with Metal Melts), Kyiv: Naukova Dumka, 2008.

  19. Lisovsky, A.F., The migration of metal melts in sintered composite materials, Int. J. Heat Mass Transfer, 1990, vol. 33, no. 8, pp. 1599–1603.

    Article  Google Scholar 

  20. Matveichuk, A.A. and Davidenko, S.A., On the interaction of the cobalt melt with polycrystalline tungsten monocarbide, J. Superhard Mater., 2018, vol. 40, no. 3, pp. 184–188.

    Article  Google Scholar 

  21. Lisovskii, A.F., Thermodynamics of the particle consolidation in a three-phase system, J. Superhard Mater., 2007, vol. 29, no. 4, pp. 224–227.

    Article  Google Scholar 

  22. Lisovskii, A.F., Thermodynamics of sintering composite materials with the liquid phase present, J. Superhard Mater., 2010, vol. 33, no. 3, pp. 166–172.

    Article  Google Scholar 

  23. Lykov, A.V., Teplomassoobmen (Heat and Mass Exchange), Moscow: Energiya, 1972.

    Google Scholar 

  24. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, New York: Wiley, 1955.

    Google Scholar 

  25. Lisovsky, A.F., Thermodynamics of the formation of mesostrucnure in nanodispersed composite materials, Sci. Sintering, 2009, vol. 41, pp. 293–301.

    Article  CAS  Google Scholar 

  26. Lisovsky, A.F., On the application of Laplace pressure in the science of sintering, Sci. Sintering, 2010, vol. 42, pp. 357–362.

    Article  CAS  Google Scholar 

  27. Petrov, Yu.I., Klastery i malye chastitsy (Clusters and Microparticles), Moscow: Nauka, 1986.

  28. Vul’f, Yu.V., Izbrannye raboty po kristallofizike i kristallografii (Selected Papers on Crystal Physics and Crystallography), Moscow: Gostekhizdat, 1952.

  29. Kushch, V.I., Lisovsky, A.F., and Shestakov, S.I., Modeling of the mesostructure in sintered hard alloys, Sverkhtverd. Mater., 2003, no. 3, pp. 32–40.

  30. Loshak, M.G., Prochnost’ i dolgovechnost’ tverdykh splavov (Strength and Durability of Sold Alloys), Kiev: Naukova Dumka, 1984.

  31. Fang, Z.Z., Giffo, A., White, B., Lockwood, G., Belnap, D., Hilmas, G., and Bitler, J., Fracture resistant super hard materials and hardmetals composite with functionally designed microstructure, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, pp. 453–459.

    Article  CAS  Google Scholar 

  32. Bondarenko, V.P. and Matveichuk, V.V., Computer simulation of chemical equilibria in a carbon–hydrogen–oxygen triple system, Energotekhnol. Resursosberezhenie, 2015, nos. 5–6, pp. 43–54.

  33. Bondarenko, V.P. and Matveichuk, V.V., Computer simulation of chemical equilibria in the C–W–H triple system, Energotekhnol. Resursosberezhenie, 2016, no. 2, pp. 50–61.

  34. Bondarenko, V.P. and Matveichuk, V.V., Computer simulation of chemical equilibria in a WO3–H2O triple system, Energotekhnol. Resursosberezhenie, 2017, no. 4, pp. 35–48.

  35. Bondarenko, V.P., Matveichuk, A.A., Savchuk, A.N., Vashchenko, A.N., and Gomelyako, T.V., A study of combined reduction-carbidization of tungsten from WO3 in methane-hydrogen atmosphere without use of graphite, J. Superhard Mater., 2006, vol. 28, no. 5, pp. 33–44.

    Google Scholar 

  36. Bondarenko, V.P., Andreyev, I.V., Savchuk, A.N., Matveichuk, A.A., Ievdokymova, O.V., and Galkov, A.V., Recent researches on the metal-ceramic composites based on the decamicron-grained WC, Int. J. Refract. Met. Hard Mater., 2013, vol. 39, pp. 18–31.

    Article  CAS  Google Scholar 

  37. Mechnik, V.A., The effect of CrB2, TiB2, and WC impurities on the structure formation in the diamond–Fe–Cu–Ni–Sn system: Preparation, properties, and application, Fiz. Inzh. Poverkhn., 2013, vol. 11, no. 4, pp. 378–392.

    Google Scholar 

  38. Lebedev, A.A. and Chechin, E.V., Selecting allowable stresses in computing structures according to the static strength criterion, Strength Mater., 1980, vol. 12, no. 4, pp. 435–438.

    Article  Google Scholar 

  39. Lisovsky, A.F., Some speculations on an increase of WC–Co cemented carbide service life under dynamic loads, Int. J. Refract. Met. Hard Mater., 2003, vol. 21, pp. 63–67.

    Article  CAS  Google Scholar 

  40. Lisovsky, A.F., Formation of mesostructure in WC–Co cemented carbides: A review, Sci. Sintering, 2011, vol. 43, no. 2, pp. 161–173.

    Article  CAS  Google Scholar 

  41. Tsypin, N.V., Iznosostoikost’ kompozitsionnykh almazosoderzhashchikh materialov dlya burovogo instrumenta (Wear Resistance of Diamond-Containing Composite Materials for Drilling Tools), Kiev: Naukova Dumka, 1979.

  42. Bondarenko, N.A., Novikov, N.V., Mechnik, V.A., Oleinik, G.S., and Vereshchaka, V.M., Structural peculiarities of highly wear-resistant superhard composites of the diamond–WC–6Co carbide system, Sverkhtverd. Mater., 2004, no. 6, pp. 3–15.

  43. Lisovsky, A.F., Bondarenko, N.A., and Davidenko, S.A., Structure and properties of the diamond–WC–Co composite doped by 1.5 wt % of CrSi2, J. Superhard Mater., 2016, vol. 38, no. 6, pp. 382–392.

    Article  Google Scholar 

  44. Bondarenko, V.P., Sirota, K.I., Orap, A.A., et al., The effect of the composition of sintered materials based on hard alloys of the VN group on the structure, physicomechanical properties, and workability in a friction pair, in Tekhnologiya izgotovleniya tverdosplavnykh izdelii (Manufacturing Tehcnology of Solid Alloy Products), Kiev: Inst. Sverkhtverd. Mater., Akad. Nauk UkrSSR, 1978, pp. 84–90.

  45. Prokopiv, N., Kharchenko, O., Gevorkyan, E., and Gutsalenko, Yu., Exploring the process to obtain a composite based on Cr2O3–AlN using a method of hot pressing, East.-Eur. J. Enterp. Technol., 2019, vol. 3, no. 12 (99), pp. 17–21.

  46. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond-containing composites used in drilling and stone-working tools (A review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Lisovsky.

Additional information

Translated by S. Semenova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisovsky, A.F. Theory and Practice of Mesostructure Formation in Composite Materials. A Review. J. Superhard Mater. 42, 129–144 (2020). https://doi.org/10.3103/S1063457620030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620030065

Keywords:

Navigation