Skip to main content
Log in

A Study of the Thermal Conductivity, Electrical Resistivity, and Microwave Absorption of Pressureless Sintered AlN–Y2O3–Mo and AlN–Y2O3–TiN Composites

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Compositions of AlN–Y2O3–Mo and AlN–Y2O3–TiN composite materials with high thermal conductivity have been selected for bulk absorbers of microwave energy in delay systems. The thermal conductivity, electrical resistivity, and electromagnetic absorption of pressureless sintered AlN-based composites with different volume concentrations of conducting Mo and TiN particles are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The composition of PSrMPd 62–27–5B: 67.5–68.5 wt % silver, 4.5–5.5 wt % palladium, and the rest is copper; melting point Tm = 810°C.

  2. Hereafter, the composition of materials is given in vol %.

  3. The absorber ring with an outer diameter of 16 mm, an inner diameter of 6 mm, and a thickness of 2.7 mm is located in the 15th resonator of the DS.

REFERENCES

  1. Calame, J.P., High heat flux thermal management of microfabricated upper millimeter-wave vacuum electronic devices, Proc. 2008 IEEE Int. Vacuum Electronics Conf., Piscataway, NJ: Inst. Electr. Electron. Eng., 2008, pp. 50–51.

  2. Slack, G.A., Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids, 1973, vol. 34, pp. 321–335.

    Article  CAS  Google Scholar 

  3. Haggertt, J.S. and Lightfoot, A., Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing, Ceram. Eng. Sci. Proc., 1995, vol. 16, pp. 475–487.

    Article  Google Scholar 

  4. Hirosaki, N., Ogata, S., Kocer, C., Kitagawa, H., and Nakamura, Y., Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, 134110.

    Article  Google Scholar 

  5. Slack, G.A., Tanzilli, R.A., Pohl, R.A., and Vandersande, J.W., The intrinsic thermal conductivity of AlN, J. Phys. Chem. Solids, 1987, vol. 48, no. 7, pp. 641–647.

    Article  CAS  Google Scholar 

  6. Lee, H.-K. and Kim, D.K., Defect characterization of high thermal conductivity CaF2 doped AlN ceramics by Raman spectroscopy, Mod. Phys. Lett. B, 2009, vol. 23, nos. 31–32, pp. 3869–3876.

    Article  CAS  Google Scholar 

  7. Khan, A.A. and Labbe, J.C., Aluminum nitride–molybdenum ceramic matrix composites: Characterization of the ceramic–metal interface, J. Eur. Ceram. Soc., 1996, vol. 16, pp. 739–744.

    Article  CAS  Google Scholar 

  8. Calame, J.P., Garven, M., Lobas, D., Mayers, R.E., Wood, F., and Abe, D.K., Broadband microwave and W-band characterization of BeO–SiC and AlN-based lossy composites for vacuum electronics, Proc. 2006 IEEE Int. Vacuum Electronics Conf. and 2006 IEEE Int. Vacuum Electron Sources, Monterey, California, April 25–27,2006, Piscataway, NJ: Inst. Electr. Electron. Eng., 2006, pp. 37–38.

  9. Calame, J.P. and Abe, D.K., Applications of advanced materials technologies to vacuum electronic devices, Proc. IEEE, 1999, vol. 87, no. 5, pp. 840–864.

    Article  CAS  Google Scholar 

  10. Abe, D.K., Whaley, D.R., Feng, J., and Jellonek, J., Guest editorial special issue on vacuum electronics, IEEE Trans. Electron Devices, 2018, vol. 65, no. 6, pp. 2058–2060.

    Article  Google Scholar 

  11. Chasnyk, V.I., Fesenko, I.P., Kaidash, O.M., Kushch, V.I., and Zakharchuk, G.P., Theoretical and experimental estimations of the dielectric permittivity of AlN–Mo pressureless sintered composites at the frequencies of 3.2–10.0 GHz, J. Superhard Mater., 2017, vol. 39, no. 4, pp. 230–242.

    Article  Google Scholar 

  12. Calame, J.P. and Savrun, E., Dielectric and thermal conductivity characterization of aluminum nitride-based microwave absorbing ceramics for vacuum electronics, Proc. 2018 IEEE Interanational Vacuum Electronica Conference (IVEC), Piscataway, NJ: Inst. Electr. Electron. Eng., 2018, pp. 411–412.

  13. Azima, Yu.I., Belyaev, Yu.I., and Kulakov, M.V., Device for measuring the thermal conductivity coefficient of highly heat-conducting materials, Pribory Tekh. Eksp., 1985, no. 4, pp. 248–249.

  14. Taranenko, Z.I. and Trokhimenko, Ya.K., Zamedlyayushchie sistemy (Slowdown Systems), Kiev: Tekhnika, 1965.

  15. Siegman, A.E., Microwave Solid-State Masers, New York: McGraw-Hill, 1964.

    Book  Google Scholar 

  16. Gvozdover, S.D., Theory of Microwave Valves, Amsterdam: Elsevier, 1961.

    Google Scholar 

  17. Kovneristyi, Yu.K., Lazareva, I.Yu., and Ravaev, A.A., Materialy pogloshchayushchie SVCh-izlucheniya (Materials Absorbing Microwave Radiation), Moscow: Nauka, 1982.

  18. Bukharin, E.N., Vlasov, A.S., and Alekseev, A.A., New high-conductivity volumetric microwave absorbers, Elektron. Tekh., 1988, no. 6 (235), pp. 66–70.

  19. Fel’dshtein, A.P., Yavich, L.R., and Smirnov, V.P., Spravochnik po elementam volnovodnoi tekhniki (Handbook on Waveguide Components), Moscow: Sovetskoe Radio, 1967.

  20. Fesenko, I.P., Prokopiv, M.M., Chasnyk, V.I., Kaidash, O.M., Oliinik, G.S., and Kuzenkova, M.A., Alyumonitridni funktsional’ni materiali, oderzhani z nanodispersnikh ta mikronnikh poroshkiv garyachim presuvannyam ta vil’nim spikannyam (Aluminum Nitride-Based Functional Materials Obtained from Nanodispersed and Micron Powders by Hot Pressing and Free Sintering), Novikov, M.V., Ed., Kyiv: Alkon, 2015.

    Google Scholar 

  21. Fesenko, I.P., AlN-based dielectric ceramics of high heat conductivity, Sverkhtverd. Mater., 2001, vol. 23, no. 2, pp. 15–20.

    Google Scholar 

  22. Zha, X.-H., Yin, J., Zhou, Y., Huang, Q., Luo, K., Lang, J., Francisco, J.S., He, J., and Du, S., Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene, J. Phys. Chem. C, 2016, vol. 120, no. 28, pp. 15082–15088.

    Article  CAS  Google Scholar 

  23. Kingery, W.D., Introduction to Ceramics, New York: Wiley, 1960.

    Google Scholar 

  24. Bukharin, E.N. and Il’ina, E.N., Volumetric absorbers of microwave energy in the constructions of modern electric-vacuum microwave and measuring devices, Naukoemkie Tekhnol., 2014, no. 11, pp. 57–64.

  25. Fesenko, I.P., Kisly, P.S., Kuzenkova, M.A., Prikhna, T.O., Sulzenko, V.K., and Dub, S.M., Properties of AlN–TiN composite ceramics, Br. Ceram. Trans., 2000, vol. 99, no. 6, pp. 278–279.

    Article  CAS  Google Scholar 

  26. Tangen, I.-L., Yu, Y., Grande, T., Hoier, R., and Einarsrud, M.-A., Preparation and characterization of aluminum nitride–titanium nitride composites, J. Eur. Ceram. Soc., 2004, vol. 24, no. 7, pp. 2169–2179.

    Article  CAS  Google Scholar 

  27. Chasnyk, V.I., The influence of the structural hierarchy of particles of the conducting phase in the material of a volumetric absorber during absorption of microwave energy, Elektron. Svyaz’, 2011, no. 1 (60), pp. 43–47.

  28. Chasnyk, V.I. and Fesenko, I.P., Thermal conductivity of intra-vacuum volumetric absorbers of microwave energy, Tekh. Pribory SVCh, 2011, no. 2, pp. 47–51.

  29. Chasnyk, V.I. and Fesenko, I.P., High-thermal conductivity microwave absorbers based on aluminum nitride and silicon carbide with molybdenum additives, Tekhnol. Konstr. Elektron. Appar., 2014, no. 1, pp. 11–14.

Download references

ACKNOWLEDGMENTS

We express our sincere gratitude to G.S. Oleinik, Dr. Sci. (Phys.–Math.), from the Frantsevich Institute of Problems of Materials Science, National Academy of Sciences of Ukraine, for the help in conducting the X-ray spectral microanalysis and N.V. Sergienko, Research Associate of the Bakul Institute of Superhard Materials, National Academy of Sciences of Ukraine, for the assistance in measuring the electrical conductivity of composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Fesenko.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasnyk, V.I., Chasnyk, D.V., Fesenko, I.P. et al. A Study of the Thermal Conductivity, Electrical Resistivity, and Microwave Absorption of Pressureless Sintered AlN–Y2O3–Mo and AlN–Y2O3–TiN Composites. J. Superhard Mater. 42, 165–176 (2020). https://doi.org/10.3103/S1063457620030028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620030028

Keywords:

Navigation