Skip to main content
Log in

On the analytic representation of Newtonian systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We show that the theory of self-adjoint differential equations can be used to provide a satisfactory solution of the inverse variational problem in classical mechanics. A Newtonian equation, when transformed to the self-adjoint form, allows one to find an appropriate Lagrangian representation (direct analytic representation) for it. On the other hand, the same Newtonian equation in conjunction with its adjoint provides a basis to construct a different Lagrangian representation (indirect analytic representation) for the system. We obtain the time-dependent Lagrangian of the damped harmonic oscillator from the self-adjoint form of the equation of motion and at the same time identify the adjoint of the equation with the so-called Bateman image equation with a view to construct a time-independent indirect Lagrangian representation. We provide a number of case studies to demonstrate the usefulness of the approach derived by us. We also present similar results for a number of nonlinear differential equations by using an integral representation of the Lagrangian function and make some useful comments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R M Santilli, Foundation of theoretical mechanics, in: The inverse problem in Newtonian mechanics (Springer Verlag, New York, 1978) Vol. 1

  2. J Douglas, Trans. Am. Math. Soc. 50, 71 (1941)

    Google Scholar 

  3. M Crampin, T Mestdag and W Sarlet, Z. Angew. Math. Mech. 90, 502 (2010)

    Google Scholar 

  4. H Goldstein, Classical mechanics (Addison-Wesley, Reading, MA, 1950)

    MATH  Google Scholar 

  5. G Morandi, C Ferrario, G Lo Vecchio, G Marmo and C Rubano, Phys. Rep. 188, 147 (1990)

    ADS  MathSciNet  Google Scholar 

  6. R Courant and D Hilbert, Methods of mathematical physics (Wiley Eastern Pvt. Ltd., New Delhi, 1975) Vol. 1

  7. E A Coddington and N Levinson: Theory of ordinary differential equations (McGraw-Hill Book Co., New York, 1955)

    MATH  Google Scholar 

  8. E L Ince, Ordinary differential equations (Dover Publications, New York, 1958)

    Google Scholar 

  9. N H Ibragimov, J. Math. Anal. Appl. 318, 742 (2006)

    MathSciNet  Google Scholar 

  10. N H Ibragimov, J. Phys. A 44, 432002 (2011)

    ADS  Google Scholar 

  11. S Ghosh, B Talukdar, P Sarkar and U Das, Acta Mech. 190, 73 (2007)

    Google Scholar 

  12. A Saha and B Talukdar, Rep. Math. Phys. 73, 299 (2014)

    ADS  MathSciNet  Google Scholar 

  13. Rami Ahmed El-Nebulsi, Can. J. Phys. 93, 55 (2015)

    Google Scholar 

  14. G López, Ann. Phys. (NY) 251, 363 (1996)

    ADS  Google Scholar 

  15. I N Sneddon, Elements of partial differential equations (McGraw-Hill Book Co., NY, 1957)

    MATH  Google Scholar 

  16. C Caratheodory, Calculus of variations and partial differential equations of the first order (Holden-Day Inc., San Fransisco, 1967) Vol. 2

    MATH  Google Scholar 

  17. B Talukdar and U Das, Higher-order systems in classical mechanics (Narosa Publishing House, New Delhi, 2008)

    Google Scholar 

  18. P Caldirola, Il Nuovo Cimento 18, 393 (1941)

    ADS  Google Scholar 

  19. E Kanai, Prog. Theor. Phys. 3, 440 (1948)

    ADS  Google Scholar 

  20. Z E Musielak, N Davachi and M Rosario-Franco, Mathematics 8, 379 (2020)

    Google Scholar 

  21. H Bateman, Phys. Rev. 38, 815 (1931)

    ADS  MathSciNet  Google Scholar 

  22. M G Fuda and J S Whiting, Phys. Rev. C 8, 1255 (1973)

    ADS  Google Scholar 

  23. B Talukdar, M N Sinha Roy, N Mallick and D K Nayek, Phys. Rev. C 12, 370 (1975)

    ADS  Google Scholar 

  24. B Talukdar, N Mallick and S Mukhopadhyaya, Phys. Rev. C 15, 1252 (1977)

    ADS  Google Scholar 

  25. Z E Musielak, Chaos Solitons Fractals 42, 2645 (2009)

    ADS  MathSciNet  Google Scholar 

  26. V K Chandrasekar, M Senthivelan and M Lakshmanan, J. Math. Phys. 48, 032701 (2007)

    ADS  MathSciNet  Google Scholar 

  27. Subrata Ghosh, J Shamanna and B Talukdar, Can. J. Phys. 82, 561 (2004)

    ADS  Google Scholar 

  28. R de Ritis, G Marmo, G Plastino and P Scudellaro, Int. J. Theor. Phys. 22, 931 (1983)

    Google Scholar 

  29. P Havas, Il Nuovo Cimento 5, 363 (1957)

    ADS  Google Scholar 

  30. Z E Musielak, J. Phys. A 41, 055205 (2008)

    ADS  MathSciNet  Google Scholar 

  31. C M Bender, M Gianfreda, N Hassanpour and H F Jones, J. Math. Phys. 57, 084101 (2016)

    ADS  MathSciNet  Google Scholar 

  32. M J Prelle and M F Singer, Trans. Am. Math. Soc. 279, 215 (1983)

    Google Scholar 

  33. V K Chandrasekar, M Senthilvelan and M Lakshmanan, Proc. R. Soc. A 461, 2451 (2005)

    ADS  Google Scholar 

  34. S A Hojman, Acta Mech. 226, 735 (2015)

    MathSciNet  Google Scholar 

  35. S A Hojman, J. Phys. A 17, 2399 (1984)

    ADS  MathSciNet  Google Scholar 

  36. R Hojman, S A Hojman and J Sheinbaum, Phys. Rev. D 28, 1333 (1983)

    ADS  MathSciNet  Google Scholar 

  37. V K Chasndrasekar, M Senthilvelan and M Lakshmanan, Phys. Rev. E 72, 066203 (2005)

    ADS  Google Scholar 

  38. L D Landau and E M Lifshitz, Mechanics (Pergamon Press, New York, 1982)

    MATH  Google Scholar 

  39. N Q Hu and X S Wen, J. Sound Vib. 268, 917 (2003)

    ADS  Google Scholar 

  40. M A F Sanjuán, J L Valero and M G Velarde, Il Nuovo Cimento D 13, 913 (1991)

    ADS  Google Scholar 

  41. J A Elliott, Am. J. Phys. 50, 1148 (1982)

    ADS  Google Scholar 

  42. T A Nayfeh and A F Vakakis, Int. J. Non-Linear Mech. 29, 233 (1994)

    ADS  Google Scholar 

  43. J Guerrero, F F López-Ruiz, V Aldaya and F Cassío, J. Phys. A 44, 445307 (2011)

    MathSciNet  Google Scholar 

  44. N E Martínez-Perez and C Ramírez, J. Math. Phys. 59, 032904 (2018)

    ADS  MathSciNet  Google Scholar 

  45. M Blasone and P Jizba, Ann. Phys. (NY) 312, 354 (2004)

    ADS  Google Scholar 

  46. K Takahashi, J. Math. Phys. 59, 032103 (2018)

    ADS  MathSciNet  Google Scholar 

  47. K Takahashi, J. Math. Phys. 59, 072108 (2018)

    ADS  MathSciNet  Google Scholar 

  48. S Li, Y Xiao, D Zhou and D Cai, Phys. Rev. E 97, 052216 (2018)

    ADS  Google Scholar 

  49. M Sabatini, J. Diff. Eqns. 152, 467 (1999)

    ADS  Google Scholar 

  50. A K Tiwari, A Durga Devi, R Gladwin Pradeep and V K Chandrasekar, Pramana – J. Phys. 85, 789 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekh Golam Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, B., Chatterjee, S. & Ali, S.G. On the analytic representation of Newtonian systems. Pramana - J Phys 94, 141 (2020). https://doi.org/10.1007/s12043-020-02010-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02010-y

Keywords

PACS Nos

Navigation