Skip to main content
Log in

Representing and analyzing relief patterns using LBP variants on mesh manifold

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Extending the concept of texture to the geometry of a mesh manifold surface is an emerging topic in computer vision. This concept is different from gluing images to the surface, but rather indicates the presence of relief patterns that locally change the surface geometry, showing some regular and repetitive patterns. The representation and the analysis of such relief patterns have several potential applications. In this paper, we propose an original and comprehensive framework to address this novel task, which redefines a large variety of local binary patterns on the mesh manifold domain. We also propose an efficient mesh re-sampling technique that enables uniform surface tessellation. We assess the different descriptive variants derived with this framework in terms of uniformity, repeatability and discriminative power. Afterward, we conduct an extensive experimentation on different datasets showcasing the competitiveness of our framework in classification and retrieval tasks, in terms of both accuracy and computational complexity, with respect to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alcantarilla PF, Bartoli A, Davison AJ (2012) Kaze features. In: European conference on computer vision, pp 214–227 . https://doi.org/10.1007/978-3-642-33783-3_16

  2. Anitha V, Murugavalli S (2016) Brain tumour classification using two-tier classifier with adaptive segmentation technique. IET Comput Vis 10(1):9–17

    Article  Google Scholar 

  3. Beecks C, Uysal MS, Seidl T (2009) Signature quadratic form distances for content-based similarity. In: ACM international conference on multimedia, pp 697–700 . https://doi.org/10.1145/1631272.1631391

  4. Biasotti S, Thompson EM, Aono M, Hamza AB, Bustos B, Dong S, Du B, Fehri A, Li H, Limberger FA, Masoumi M, Rezaei M, Sipiran I, Sun L, Tatsuma A, Forero SV, Wilson RC, Wu Y, Zhang J, Zhao T, Fornasa F, Giachetti A, Velasco-Forero S, Wilson RC, Wu Y, Zhang Y, Zhao T, Formasa F, Giachetti A (2017) Shrec’17 track: retrieval of surfaces with similar relief patterns. In: 10th Eurographics workshop on 3D object retrieval . https://doi.org/10.2312/3dor.20171058

  5. Biasotti S, Thompson EM, Bathe L, Berretti S, Giachetti A, Lejemble T, Mellado N, Moustakas K, Manolas I, Dimou D, Tortorici C, Velasco-Forero S, Werghi N, Polig M, Sorrentino G, Hermon S, Barthe L, Berretti S, Giachetti A, Lejemble T, Mellado N, Moustakas K, Manolas I, Dimou D, Tortorici C, Velasco-Forero S, Werghi N, Polig M, Sorrentino G, Hermon S (2018) SHREC’18 track: recognition of geometric patterns over 3D models. In: Eurographics workshop on 3D object retrieval, pp 71–77 . https://dl.acm.org/citation.cfm?id=3290650, https://hal-mines-paristech.archives-ouvertes.fr/hal-01774423

  6. Carvalho LE, von Wangenheim A (2019) 3d object recognition and classification: a systematic literature review. Pattern Analysis and Applications. https://doi.org/10.1007/s10044-019-00804-4

  7. Chen CC, Chen DC (1996) Multi-resolutional gabor filter in texture analysis. Pattern Recognit Lett 17(10):1069–1076. https://doi.org/10.1016/0167-8655(96)00065-7

    Article  Google Scholar 

  8. Darwish SM (2013) Soft computing applied to the build of textile defects inspection system. IET Comput Vis 7(5):373–381

    Article  Google Scholar 

  9. Fu X, Wei W (2008) Centralized Binary Patterns Embedded with Image Euclidean Distance for Facial Expression Recognition. In: 2008 Fourth International Conference on Natural Computation, vol. 4, pp. 115–119. IEEE . https://doi.org/10.1109/ICNC.2008.94. http://ieeexplore.ieee.org/document/4667260/

  10. Giachetti A (2018) Effective characterization of relief patterns. Comput Graph Forum 37(5):83–92. https://doi.org/10.1111/cgf.13493

    Article  Google Scholar 

  11. Hafiane A, Seetharaman G, Palaniappan K, Zavidovique B (2008) Rotationally invariant hashing of median binary patterns for texture classification. In: Image analysis and recognition, pp 619–629. Springer, Berlin. https://doi.org/10.1007/978-3-540-69812-8_61

  12. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436. https://doi.org/10.1016/j.patcog.2008.08.014

    Article  MATH  Google Scholar 

  13. Ho HT, Gibbins D (2009) Curvature-based approach for multi-scale feature extraction from 3d meshes and unstructured point clouds. IET Comput Vis 3(4):201–212

    Article  MathSciNet  Google Scholar 

  14. Junding S, Shisong Z, Xiaosheng W (2010) Image retrieval based on an improved CS-LBP descriptor. In: 2010 2nd IEEE international conference on information management and engineering, pp 115–117. https://doi.org/10.1109/ICIME.2010.5477432. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5477432

  15. Kazhdan M, Hoppe H (2013) Screened poisson surface reconstruction. ACM Trans Graph 32(3):29

    Article  Google Scholar 

  16. Li C, Ben Hamza A (2013) A multiresolution descriptor for deformable 3D shape retrieval. Vis Comput 29(6):513–524. https://doi.org/10.1007/s00371-013-0815-3

    Article  Google Scholar 

  17. Limberger FA, Wilson RC (2015) Feature encoding of spectral signatures for 3D non-rigid shape retrieval. In: British machine vision conference, pp 1–13. https://doi.org/10.5244/C.29.56

  18. Limberger FA, Wilson RC (2018) Curvature-based spectral signatures for non-rigid shape retrieval. Comput Vis Image Underst 172:1–11. https://doi.org/10.1016/j.cviu.2018.04.002

    Article  Google Scholar 

  19. Liu F, Picard RW (1996) Periodicity, directionality, and randomness: wold features for image modeling and retrieval. IEEE Trans Pattern Anal Mach Intell 18(7):722–733. https://doi.org/10.1109/34.506794

    Article  Google Scholar 

  20. Masoumi M, Li C, Hamza AB (2016) A spectral graph wavelet approach for nonrigid 3D shape retrieval. Pattern Recognit Lett 83:339–348. https://doi.org/10.1016/j.patrec.2016.04.009

    Article  Google Scholar 

  21. Mian A, Bennamoun M, Owens R (2008) Keypoint detection and local feature matching for textured 3D face recognition. Int J Comput Vis 79(1):1–12

    Article  Google Scholar 

  22. Moore S, Bowden R (2011) Local binary patterns for multi-view facial expression recognition. Comput Vis Image Underst 115:541–558. https://doi.org/10.1016/j.cviu.2010.12.001

    Article  Google Scholar 

  23. Moscoso Thompson E, Biasotti S (2018) Description and retrieval of geometric patterns on surface meshes using an edge-based LBP approach. Pattern Recognit 82:1–15. https://doi.org/10.1016/j.patcog.2018.04.028

    Article  Google Scholar 

  24. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59. https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  25. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  26. Othmani A, Voon LFLY, Stolz C, Piboule A (2013) Single tree species classification from terrestrial laser scanning data for forest inventory. Pattern Recognit Lett 34(16):2144–2150. https://doi.org/10.1016/j.patrec.2013.08.004

    Article  Google Scholar 

  27. Peyré G, Cohen LD (2006) Geodesic remeshing using front propagation. Int J Comput Vis 69(1):145

    Article  Google Scholar 

  28. Pietroni N, Tarini M, Cignoni P (2010) Almost isometric mesh parameterization through abstract domains. IEEE Trans Vis Comput Graph 16(4):621–635

    Article  Google Scholar 

  29. Sipiran I, Lokoc J, Bustos B, Skopal T (2017) Scalable 3D shape retrieval using local features and the signature quadratic form distance. Vis Comput 33(12):1571–1585. https://doi.org/10.1007/s00371-016-1301-5

    Article  Google Scholar 

  30. Sun X, Rosin PL, Martin RR, Langbein FC (2009) Bas-relief generation using adaptive histogram equalization. IEEE Trans Vis Comput Graph 15(4):642–653

    Article  Google Scholar 

  31. Tangelder JW, Veltkamp RC (2008) A survey of content based 3D shape retrieval methods. Multimedia Tools Appl 39(3):441–471. https://doi.org/10.1007/s11042-007-0181-0

    Article  Google Scholar 

  32. Tortorici C, Werghi N, Berretti S (2015) Boosting 3D LBP-based face recognition by fusing shape and texture descriptors on the mesh. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 2670–2674. IEEE. https://doi.org/10.1109/ICIP.2015.7351287. http://ieeexplore.ieee.org/document/7351287/

  33. Wei M, Tian Y, Pang WM, Wang CCL, Pang MY, Wang J, Qin J, Heng PA (2018) Bas-relief modeling from normal layers. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2018.2818146

  34. Werghi N, Berretti S, Del Bimbo A (2015) The mesh-lbp: a framework for extracting local binary patterns from discrete manifolds. IEEE Trans Image Process 24(1):220–235

    Article  MathSciNet  Google Scholar 

  35. Werghi N, Rahayem M, Kjellander J (2012) An ordered topological representation of 3D triangular mesh facial surface: concept and applications. EURASIP J Adv Signal Process 2012(1):144. https://doi.org/10.1186/1687-6180-2012-144

    Article  Google Scholar 

  36. Werghi N, Rahayem M, Kjellander J (2012) An ordered topological representation of 3D triangular mesh facial surface: concept and applications. EURASIP J Adv Signal Process 2012(1):144

    Article  Google Scholar 

  37. Werghi N, Tortorici C, Berretti S, del Bimbo A (2015) Local binary patterns on triangular meshes: concept and applications. Comput Vis Image Underst 139:161–177. https://doi.org/10.1016/j.cviu.2015.03.016

    Article  Google Scholar 

  38. Werghi N, Tortorici C, Berretti S, Del Bimbo A (2015) Computing local binary patterns on mesh manifolds for 3D texture retrieval. In: Proceedings of the 2015 Eurographics workshop on 3D object retrieval, pp 91–94. https://doi.org/10.2312/3dor.20151061

  39. Werghi N, Tortorici C, Berretti S, Del Bimbo A (2015) Representing 3D texture on mesh manifolds for retrieval and recognition applications. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), vol 07–12-June, pp 2521–2530. IEEE. https://doi.org/10.1109/CVPR.2015.7298867. http://ieeexplore.ieee.org/document/7298867/

  40. Werghi N, Tortorici C, Berretti S, Del Bimbo A (2016) Boosting 3D LBP-based face recognition by fusing shape and texture descriptors on the mesh. IEEE Trans Inf Forensics Secur 11(5):964–979. https://doi.org/10.1109/TIFS.2016.2515505

    Article  Google Scholar 

  41. Wu X, Sun J (2009) An effective texture spectrum descriptor. In: 2009 Fifth international conference on information assurance and security, vol 2, pp 361–364. IEEE . https://doi.org/10.1109/IAS.2009.126. http://ieeexplore.ieee.org/document/5283492/

  42. Xu Q, Jamniczky H, Hu D, Green RM, Marcucio RS, Hallgrimsson B, Mio W (2015) Correlations between the morphology of sonic hedgehog expression domains and embryonic craniofacial shape. Evol Biol 42(3):379–386

    Article  Google Scholar 

  43. Zeppelzauer M, Poier G, Seidl M, Reinbacher C, Schulter S, Breiteneder C, Bischof H (2016) Interactive 3D segmentation of rock-art by enhanced depth maps and gradient preserving regularization. J Comput Cult Herit 9(4):19:1–19:30. https://doi.org/10.1145/2950062

    Article  Google Scholar 

  44. Zhenhua G, Lei Z, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663. https://doi.org/10.1109/TIP.2010.2044957

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Tortorici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortorici, C., Werghi, N. & Berretti, S. Representing and analyzing relief patterns using LBP variants on mesh manifold. Pattern Anal Applic 24, 557–573 (2021). https://doi.org/10.1007/s10044-020-00920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-020-00920-6

Keywords

Navigation