Skip to main content
Log in

Comparison of bound magneto-polaron in circular, elliptical, and triangular quantum dot qubit

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present work, we consider an electron which is strongly coupled to the LO-phonon in circular, elliptical, and triangular quantum dots with Coulomb impurity. The eigenenergies and eigenfunctions of the ground and the first-excited states of the electron are obtained under magnetic and electric fields by using the Pekar variational method. We have also obtained the Shannon entropy and the electron probability density. This system can be applied as a two-level qubit. The entropy shows the oscillatory periodic evolution as function of the time due to the form of the confinement. It is seen that entropy has an arrangement periodic behavior for the higher symmetry (circular quantum dot).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamowski, J., Sobkowicz, M., Szafran, B., Bednarek, S.: Electron pair in a Gaussian confining potential. Phys. Rev. B 62, 4234–4239 (2000)

    ADS  Google Scholar 

  • Adamowski, J., Kwasniowski, A., Szafran, B.: LO-phonon-induced screening of electron–electron interaction in D centres and quantum dots. J. Phys. Condense Matter. 17, 4450–4489 (2005)

    Google Scholar 

  • Algharni, M., Al-Ghamdi, H., Abdel-Khalek, S.: Quantum Fisher information and nonclassical properties of a two-atom interacting with a radiation field in squeezed coherent states. Opt. Quant. Electron. 52, 263 (2020)

    Google Scholar 

  • Bednarek, S., Szafran, B., Adamowski, J.: Many-electron artificial atoms. Phys. Rev. B 59, 13036–13041 (1999)

    ADS  Google Scholar 

  • Bednarek, S., Szafran, B., Lis, K., Adamowski, J.: Modeling of electronic properties of electrostatic quantum dots. Phys. Rev. B 68, 155333–155338 (2003)

    ADS  Google Scholar 

  • Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247–255 (2000)

    ADS  MATH  Google Scholar 

  • Berman, G.P., Doolen, G.D., Tsifrinovich, V.I.: Solid-state quantum computation-a new direction for nanotechnology. Superlatt. Microstruct. 27, 89–104 (2000)

    ADS  Google Scholar 

  • Chau, H.F.: Comment on “Connection between entanglement and the speed of quantum evolution” and on “Entanglement and the lower bounds on the speed of quantum evolution”. Phys. Rev. A 82, 056301–056305 (2010)

    ADS  Google Scholar 

  • Chen, Y.J., Xiao, J.L.: The temperature effect of the parabolic linear bound potential quantum dot qubit. Acta Phys. Sin. 57, 6758–6762 (2008)

    Google Scholar 

  • Ciurla, M., Adamowski, J., Szafran, B., Bednarek, S.: Modelling of confinement potentials in quantum dots. Phys. E 15, 261–268 (2002)

    Google Scholar 

  • Ezaki, T., Mori, N., Hamaguchi, C.: Electronic structures in circular, elliptic, and triangular quantum dots. Phys. Rev. B 56, 6428–6433 (1998)

    ADS  Google Scholar 

  • Fedichkin, L., Fedorov, A.: Error rate of a charge qubit coupled to an acoustic phonon reservoir. Phys. Rev. A 69, 032311–032317 (2004)

    ADS  Google Scholar 

  • Fotue, A.J., Fobasso, M.F.C., Kenfack, S.C., Tiotsop, M., Djomou, J.R.D., Ekosso, C.M., Nguimeya, G.P., Danga, J.E., Tsiaze, R.M.K., Fai, L.C.: Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential. Eur. Phys. J. Plus 131, 205–212 (2016a)

    Google Scholar 

  • Fotue, A.J., Issofa, N., Tiotsop, M., Kenfack, S.C., Djemmo, M.P.T., Wirngo, A.V., Fotsin, H., Fai, L.C.: Bound magneto-polaron in triangular quantum dot qubit under an electric field. Superlatt. Microstruct. 90, 20–29 (2016b)

    ADS  Google Scholar 

  • Gershenfeld, N.A., Chuang, L.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    MathSciNet  MATH  Google Scholar 

  • Gharaati, A., Khordad, R.: A new confinement potential in spherical quantum dots: modified Gaussian potential. Superlatt. Microstrut. 48, 276–287 (2010)

    ADS  Google Scholar 

  • Hawrylak, P., Korkusinski, M.: Voltage-controlled coded qubit based on electron spin. Solid State Commun. 136, 508–512 (2005)

    ADS  Google Scholar 

  • Johnson, N.F.: Quantum dots: few-body, low-dimensional systems. J. Phys. Condens. Matter. 7, 965–990 (1995)

    ADS  Google Scholar 

  • Kang, S., Li, J., Shi, T.Y.: Investigation of hydrogenic-donor states confined by spherical quantum dots with B-splines. J. Phys. B: At. Mol. Opt. Phys. 39, 3491–3506 (2006)

    ADS  Google Scholar 

  • Khordad, R.: Study of strong-coupling impurity bound polaron in a quantum pseudodot. Mod. Phys. Lett. B 29, 1550058–1550065 (2015)

    MATH  Google Scholar 

  • Khordad, R.: Effect of impurity bound polaron on optical absorption in a GaAs modified Gaussian quantum dot. Opt. Quant. Electron. 48, 251 (2016)

    Google Scholar 

  • Kwasniowski, A., Adamowski, J.: Effect of confinement potential shape on exchange interaction in coupled quantum dots. J. Phys. Condens. Matter. 20, 215208–215212 (2008)

    ADS  Google Scholar 

  • Li, S.S., Long, G.L., Bai, F.S., Feng, S.L., Zheng, H.Z.: Quantum computing. Proc. Natl. Acad. Sci. U.S.A. 98, 11847–11854 (2001a)

    ADS  Google Scholar 

  • Li, S.S., Xia, J.B., Liu, J.L., Yang, F.H., Niu, Z.C., Feng, S.L., Zheng, H.Z.: InAs/GaAs single-electron quantum dot qubit. J. Appl. Phys. 90, 6151–6158 (2001b)

    ADS  Google Scholar 

  • Li, W.P., Yin, J.W., Yu, Y.F., Wang, Z.W., Xiao, J.L.: The effect of magnetic on the properties of a parabolic quantum dot qubit. J. Low Temp. Phys. 160, 112–118 (2010)

    ADS  Google Scholar 

  • Li, H.J., Yin, J.W., Xiao, J.L.: The triangular and Coulomb bound potential quantum dot qubit. J. Low Temp. Phys. 172, 266–273 (2013)

    ADS  Google Scholar 

  • Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–129 (1998)

    ADS  Google Scholar 

  • Makhlin, Y., Schon, G., Shnirman, A.: Josephson-junction qubits with controlled couplings. Nature (London) 398, 305–307 (1999)

    ADS  Google Scholar 

  • Nielsen, M.A., Chang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Rajamohan, C., Merwyn Jasper, A., Reuben, D., Nithiananthi, P., Jayakumar, K.: Shape effect of diamagnetic susceptibility of a hydrogenic donor in a nano structured semiconductor systems. J. Math. Chem. 44, 743–748 (2008)

    MathSciNet  MATH  Google Scholar 

  • Servatkhah, M.: Study of RbCl quantum pseudo-dot qubits using Shannon and Laplace entropies. Opt. Quant. Electron. 52, 126 (2020)

    Google Scholar 

  • Sun, Y., Xiao, J.L.: The magnetic field effect on the coherence time of qubit in RbCl crystal quantum pseudodot. Opt. Quant. Electron. 51, 110 (2019)

    Google Scholar 

  • Sun, J.K., Li, H.J., Xiao, J.L.: Decoherence of the triangular bound potential quantum dot qubit. Mod. Phys. Lett. B 23, 3273–3279 (2009a)

    ADS  MATH  Google Scholar 

  • Sun, J.K., Li, H.J., Xiao, J.L.: The temperature effect of the triangular bound potential quantum dot qubit. Superlatt. Microstruct. 46, 476–482 (2009b)

    ADS  Google Scholar 

  • Sun, J.K., Li, H.J., Xiao, J.L.: Triangular bound potential quantum dot qubit. Phys. B 404, 1961–1964 (2009c)

    ADS  Google Scholar 

  • Szafran, B., Adamowski, J., Bednarek, S.: Ground and excited states of few-electron systems in spherical quantum dots. Phys. E 4, 1–10 (1999)

    Google Scholar 

  • Szafran, B., Bednarek, S., Adamowski, J.: Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum dots. Phys. Rev. B 64, 125301–125307 (2001)

    ADS  Google Scholar 

  • Wang, Z.W., Xiao, J.L.: Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Phys. Sin. 56, 0678–0682 (2007)

    Google Scholar 

  • Wang, Z.W., Li, W.P., Yin, J.W., Xiao, J.L.: Properties of parabolic linear bound potential and coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 49, 311–315 (2008)

    ADS  MATH  Google Scholar 

  • Wen, Y.J., Xiao, J.L., Yu, Y.F., Wang, Z.W.: The influence of electric field on a parabolic quantum dot qubit. Chin. Phys. B 18, 446–450 (2009)

    ADS  Google Scholar 

  • Xiao, J.L.: The effect of electric field on an asymmetric quantum dot qubit. Quantum Inf. Process. 12, 3707–3716 (2013)

    ADS  MATH  Google Scholar 

  • Xiao, J.L.: Influences of temperature and impurity on excited state of bound polaron in the parabolic quantum dots. Superlatt. Microstruct. 70, 39–45 (2014)

    ADS  Google Scholar 

  • Xiao, J.L.: The effect of Coulomb impurity potential on the coherence time of RbCl quantum pseudodot qubit. J. Low Temp. Phys. 195, 442–449 (2019)

    ADS  Google Scholar 

  • Xie, W.: Binding energy of an off-center hydrogenic donor in a spherical Gaussian quantum dot. Phys. B 403, 2828–2831 (2008a)

    ADS  Google Scholar 

  • Xie, W.: Investigation of D centers confined by spherical quantum dots. Phys. Stat. Sol. B 245, 101–105 (2008b)

    ADS  Google Scholar 

  • Yu, Y.F., Li, W.P., Yin, J.W., Xiao, J.L.: The decoherence of single electron quantum dot qubit. Int. J. Theor. Phys. 50, 3322–3327 (2011)

    MATH  Google Scholar 

  • Zander, C., Borras, A., Plastino, A.R., Plastino, A., Casas, M.: Entanglement and the speed of evolution of two interacting qubits. J. Phys. A 46, 095302–095307 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Zhu, J.L., Chen, X.: Spectrum and binding of an off-center donor in a spherical quantum dot. Phys. Rev. B 50, 4497–4505 (1994)

    ADS  Google Scholar 

  • Zhu, J.L., Zhao, J.H., Xiong, J.J.: Neutral and negative donors in quantum dots. J. Phys. Condense Matter 6, 5097–5104 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Rastegar Sedehi, H.R. Comparison of bound magneto-polaron in circular, elliptical, and triangular quantum dot qubit. Opt Quant Electron 52, 428 (2020). https://doi.org/10.1007/s11082-020-02531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02531-1

Keywords

Navigation