Skip to main content
Log in

Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The paper deals with a Bolza optimal control problem for a dynamical system, whose motion is described by a delay differential equation under an initial condition defined by a piecewise continuous function. For the value functional in this problem, the Cauchy problem for the Hamilton–Jacobi–Bellman equation with coinvariant derivatives is considered. Minimax and viscosity solutions of the Cauchy problem are studied. It is proved that both of these solutions exist, are unique, and coincide with the value functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Subbotin, A.I.: A generalization of the basic equation of the theory of differential games. Sov. Math. Dokl. 22, 358–362 (1980)

    MATH  Google Scholar 

  2. Subbotin, A.I.: Generalization of the main equation of differential game theory. J. Optim. Theory Appl. 43(1), 151–162 (1984)

    MathSciNet  Google Scholar 

  3. Subbotin, A.I.: Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective. Birkhäuser, Berlin (1995)

    Google Scholar 

  4. Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)

    Google Scholar 

  5. Krasovskii, A.N., Krasovskii, N.N.: Control Under Lack of Information. Birkhäuser, Berlin (1995)

    MATH  Google Scholar 

  6. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)

    MathSciNet  MATH  Google Scholar 

  8. Barbu, V.: Hamilton–Jacobi equations and nonlinear control problems. J. Funct. Anal. 120, 494–509 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  10. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  11. Krasovskii, N.N.: On the analytic construction of an optimal control in a system with time lags. J. Appl. Math. Mech. 26(1), 50–67 (1962)

    MathSciNet  Google Scholar 

  12. Osipov, Y.S.: Differential games of systems with aftereffect. Dokl. Akad. Nauk. SSSR 196(4), 779–782 (1971)

    MathSciNet  Google Scholar 

  13. Oguztoreli, M.N.: Time-Lag Control Systems. Academic Press, New York (1966)

    MATH  Google Scholar 

  14. Banks, H.T.: Necessary conditions for control problems with variable time lags. SIAM J. Control Optim. 6(1), 9–47 (1968)

    MathSciNet  MATH  Google Scholar 

  15. Banks, H.T., Manitius, A.M.: Application of abstract variational theory to hereditary systems—a survey. IEEE Trans. Autom. Control 19(5), 524–533 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Crandall, M.G., Lions, P.-L.: Hamilton–Jacobi equations in infinite dimensions I. Uniqueness of viscosity solutions. J. Funct. Anal. 62, 379–396 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Crandall, M.G., Lions, P.-L.: Hamilton–Jacobi equations in infinite dimensions II. Existence of viscosity solutions. J. Funct. Anal. 66, 368–405 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Barbu, V., Barron, E.N., Jensen, R.: The necessary conditions for optimal control in Hilbert spaces. J. Optim. Theory Appl. 133, 151–162 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Soner, H.M.: On the Hamilton–Jacobi–Bellman equations in Banach spaces. J. Optim. Theory Appl. 57(3), 429–437 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Cannarsa, P., Da Prato, G.: Some results on non-linear optimal control problems and Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 90, 27–47 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Cannarsa, P., Frankowska, H.: Value function and optimality conditions for semilinear control problems. Appl. Math. Optim. 26, 139–169 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Li, X.J.: Optimal Control Theory for Infinite-Dimensional Systems. Birkhäuser, Boston (1995)

    Google Scholar 

  23. Barron, E.N.: Application of viscosity solutions of infinite-dimensional Hamilton–Jacobi–Bellman equations to some problems in distributed optimal control. J. Optim. Theory Appl. 64(2), 245–268 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Wolenski, P.R.: Hamilton–Jacobi theory for hereditary control problems. Nonlinear Anal. Theory Methods Appl. 22(7), 875–894 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Clarke, E.H., Wolenski, P.R.: Necessary conditions for functional differential inclusions. Appl. Math. Optim. 34, 51–78 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Kim, A.V.: Functional Differential Equations. Application of \(i\)-Smooth Calculus. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  27. Lukoyanov, N.Y.: A Hamilton–Jacobi type equation in control problems with hereditary information. J. Appl. Math. Mech. 64, 243–253 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Lukoyanov, N.Y.: Functional Hamilton–Jacobi type equation in CI-derivatives for systems with distributed delays. Nonlinear Funct. Anal. Appl. 8(3), 365–397 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Lukoyanov, N.Y.: On optimality conditions for the guaranteed result in control problems for time-delay systems. Proc. Steklov Inst. Math. 1, 175–187 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Lukoyanov, N.Y.: Minimax and viscosity solutions in optimization problems for hereditary systems. Proc. Steklov Inst. Math. 2, 214–225 (2010)

    MATH  Google Scholar 

  31. Aubin, J.P., Haddad, G.: History path dependent optimal control and portfolio valuation and management. Positivity 6, 331–358 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Pepe, P., Ito, H.: On saturation, discontinuities, and delays, in iISS and ISS feedback control redesign. IEEE Trans. Autom. Control 57(5), 1125–1140 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Lukoyanov, N.Y., Gomoyunov, M.I., Plaksin, A.R.: Functional Hamilton–Jacobi equations and differential games for neutral-type systems. Dokl. Math. 96(3), 654–657 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Bayraktar, E., Keller, C.: Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 275, 2096–2161 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Dupire, B.: Functional Ito calculus. Quant. Finance 19, 721–729 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Pham, T., Zhang, J.: Two person zero-sum game in weak formulation and path dependent Bellman–Isaacs equation. SIAM J. Control Optim. 52, 2090–2121 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Saporito, Y.: Stochastic control and differential games with path-dependent influence of controls on dynamics and running cost. SIAM J. Control Optim. 57, 1312–1327 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Zhou, J.: Delay optimal control and viscosity solutions to associated Hamilton–Jacobi–Bellman equations. Int. J. Control. 92(10), 2263–2273 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Subbotin, A.I.: On a property of the subdifferential. Math. USSR Sb. 74(1), 63–78 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  41. Clarke, F.H., Ledyaev, Y.S.: Mean value inequalities in Hilbert space. Trans. Am. Math. Soc. 344(1), 307–324 (1994)

    MathSciNet  MATH  Google Scholar 

  42. Zverkin, A.M., Kemenskii, G.A., Norkin, S.B., El’sgol’ts, L.E.: Differential equations with a perturbed argument. Russ. Math. Surv. 17(2), 61–146 (1962)

    Google Scholar 

  43. Bellman, R., Cooke, K.L.: Differential–Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  44. Natanson, I.P.: Theory of Functions of a Real Variable, vol. 2. Frederick Ungar Publishing Co., New York (1960)

    MATH  Google Scholar 

  45. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Springer, Berlin (1988)

    Google Scholar 

Download references

Acknowledgements

The work was performed as part of research conducted in the Ural Mathematical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Plaksin.

Additional information

Communicated by Nikolai Pavlovich Osmolovskii.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaksin, A. Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems. J Optim Theory Appl 187, 22–42 (2020). https://doi.org/10.1007/s10957-020-01742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01742-6

Keywords

Mathematics Subject Classification

Navigation