Skip to main content
Log in

Development of calcium coke for CaC2 production using calcium carbide slag and coking coal

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production. The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry. The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically. The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time. The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process. Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.J. Mu and R.A. Hard, A rotary kiln process for making calcium carbide, Ind. Eng. Chem. Res., 26(1987), No. 10, p. 2063.

    Article  CAS  Google Scholar 

  2. D.J. Shi, K. Qiao, and Z.F. Yan, Effect of potassium carbonate on catalytic synthesis of calcium carbide at moderate temperature, Front. Chem. Sci. Eng., 5(2011), No. 3, p. 372.

    Article  CAS  Google Scholar 

  3. Y. Mi, D.X. Zheng, J. Guo, X.H. Chen, and P. Jin, Assessment of energy use and carbon footprint for low-rank coal-based oxygen-thermal and electro-thermal calcium carbide manufacturing processes, Fuel Process. Technol., 119(2014), p. 305.

    Article  CAS  Google Scholar 

  4. J. Guo and D.X. Zheng, Thermodynamic analysis of low-rank-coal-based oxygen-thermal acetylene manufacturing process system, Ind. Eng. Chem. Res., 51(2012), No. 41, p. 13414.

    Article  CAS  Google Scholar 

  5. J. Guo, D.X. Zheng, X.H. Chen, Y. Mi, and Z.Y. Liu, Chemical reaction equilibrium behaviors of an oxy-thermal carbide furnace reaction system, Ind. Eng. Chem. Res., 52(2013), No. 50, p. 17773.

    Article  CAS  Google Scholar 

  6. R.X. Wang, L.M. Ji, Q.Y. Liu, D.X. Zheng, H. Liu, and Z.Y. Liu, Development of auto-thermal production of calcium carbide, CIESC J., 65(2014), No. 7, p. 2417.

    CAS  Google Scholar 

  7. Z.Y. Liu, Q.Y. Liu, and G.D. Li, Method and System for the Production of Calcium Carbide, Word Intellectual Property Organization Patent, Appl. WO/2010/012193, 2010.

  8. G.D. Li, Q.Y. Liu, and Z.Y. Liu, CaC2 production from pulverized coke and CaO at low temperatures—Reaction mechanisms, Ind. Eng. Chem. Res., 51(2012), No. 33, p. 10742.

    Article  CAS  Google Scholar 

  9. Z.K. Li, Z.Y. Liu, R.X. Wang, X.J. Guo, and Q.Y. Liu, Conversion of bio-char to CaC2 at low temperatures-morphology and kinetics, Chem. Eng. Sci., 192(2018), p. 516.

    Article  CAS  Google Scholar 

  10. A. Pääkkönen, H. Tolvanen, and L. Kokko, The economics of renewable CaC2 and C2H2 production from biomass and CaO, Biomass Bioenergy, 120(2019), p. 40.

    Article  Google Scholar 

  11. G.D. Li, Q.Y. Liu, Z.Y. Liu, Z.C. Zhang, C.Y. Li, and W.Z. Wu, Production of calcium carbide from fine biochars, Angew. Chem. Int. Ed., 49(2010), No. 45, p. 8480.

    Article  CAS  Google Scholar 

  12. G.D. Li, Q.Y. Liu, and Z.Y. Liu, Kinetic behaviors of CaC2 production from coke and CaO, Ind. Eng. Chem. Res., 52(2013), No. 16, p. 5587.

    Article  CAS  Google Scholar 

  13. T. Mukaibo and Y. Yamanaka, Calcium carbide. III. Kinetics of the first stage of the reaction of producing calcium carbide under reduced pressure (2-3 mmHg), J. Soc. Chem. Ind., 56(1953), No. 4, p. 313.

    Google Scholar 

  14. H. Tagawa and H. Sugawara, The kinetics of the formation of calcium carbide in a solid-solid reaction, Bull. Chem. Soc. Jpn., 35(1962), No. 8, p. 1276.

    Article  CAS  Google Scholar 

  15. Q. Hu, D.D. Yao, Y.P. Xie, Y.J. Zhu, H.P. Yang, Y.Q. Chen, and H.P. Chen, Study on intrinsic reaction behavior and kinetics during reduction of iron ore pellets by utilization of biochar, Energy Convers. Manage., 158(2018), p. 1.

    Article  CAS  Google Scholar 

  16. J. Pal, S. Ghorai, and A. Das, Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making, Int. J. Miner. Metal. Mater., 22(2015), No. 2, p. 132.

    Article  CAS  Google Scholar 

  17. S.W. Du, C.P. Yeh, W.H. Chen, C.H. Tsai, and J.A. Lucas, Burning characteristics of pulverized coal within blast furnace raceway at various injection operations and ways of oxygen enrichment, Fuel, 143(2015), p. 98.

    Article  CAS  Google Scholar 

  18. H.P. Tiwari, A. Das, and U. Singh, Novel technique for assessing the burnout potential of pulverized coals/coal blends for blast furnace injection, Appl. Therm. Eng., 130(2018), p. 1279.

    Article  CAS  Google Scholar 

  19. X.Z. Gong, Z.S. Wang, Z. Wang, J.W. Cao, and S. Zhang, Roles of impurities on sintering structure and thermal strength of CaO-containing carbon pellet and the CaO sintering kinetic analysis, Powder Technol., 336(2018), p. 92.

    Article  CAS  Google Scholar 

  20. J.Q. Zhang, Z.S. Wang, T. Li, Z. Wang, S. Zhang, M. Zhong, Y.E. Liu, and X.Z. Gong, Preparation of CaO-containing carbon pellet from recycling of carbide slag: Effects of temperature and H3PO4, Waste Manage., 84(2019), p. 64.

    Article  CAS  Google Scholar 

  21. Y.J. Li, W.J. Wang, X.X. Cheng, M.Y. Su, X.T. Ma, and X. Xie, Simultaneous CO2/HCl removal using carbide slag in repetitive adsorption/desorption cycles, Fuel, 142(2015), p. 21.

    Article  CAS  Google Scholar 

  22. Y.J. Li, M.Y. Su, X. Xie, S.M. Wu, and C.T. Liu, CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis, Appl. Energy, 145(2015), p. 60.

    Article  CAS  Google Scholar 

  23. R.Y. Sun, Y.J. Li, H.L. Liu, S.M. Wu, and C.M. Lu, CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Appl. Energy, 89(2012), No. 1, p. 368.

    Article  CAS  Google Scholar 

  24. H.C. Chen, C.S. Zhao, Y.M. Yang, and P.P. Zhang, CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation, Appl. Energy, 91(2012), No. 1, p. 334.

    Article  CAS  Google Scholar 

  25. R.X Wang, Z.Y. Liu, L.M. Ji, X.J. Guo, X. Lin, J.F. Wu, and Q.Y. Liu, Reaction kinetics of CaC2 formation from powder and compressed feeds, Front. Chem. Sci. Eng., 10(2016), No. 4, p. 517.

    Article  CAS  Google Scholar 

  26. W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Cleaner Prod., 233(2019), p. 1314.

    Article  CAS  Google Scholar 

  27. S. Purohit, B. Ekman, R. Mejias, G. Brooks, and M.A. Rhamdhani, Solar processing of composite iron ore pellets: Preliminary assessments, J. Cleaner Prod., 205(2018), p. 1017.

    Article  CAS  Google Scholar 

  28. T.K. Bhattacharya, A. Ghosh, and S.K. Das, Densification of reactive lime from limestone, Ceram. Int., 27(2001), No. 4, p. 455.

    Article  CAS  Google Scholar 

  29. H.A. Yeprem, Effect of iron oxide addition on the hydration resistance and bulk density of doloma, J. Eur. Ceram. Soc., 27(2007), No. 2–3, p. 1651.

    Article  CAS  Google Scholar 

  30. R.G. Guan, W. Li, and B.Q. Li, Effects of Ca-based additives on desulfurization during coal pyrolysis, Fuel, 82(2003), No. 15–17, p. 1961.

    Article  CAS  Google Scholar 

  31. X. Jia, Q.H. Wang, L. Han, L.M. Cheng, M.X. Fang, Z.Y. Luo, and K.F. Cen, Sulfur transformation during the pyrolysis of coal with the addition of CaSO4 in a fixed-bed reactor, J. Anal. Appl. Pyrolysis, 124(2017), p. 319.

    Article  CAS  Google Scholar 

  32. S.Y. Lin, M. Harada, Y. Suzuki, and H. Hatno, Comparison of pyrolysis products between coal, coal/CaO, and coal/Ca(OH)2 materials, Energy Fuels, 17(2003), No. 3, p. 602.

    Article  CAS  Google Scholar 

  33. S.Y. Lin, M. Harada, Y. Suzuki, and H. Hatno, Gasification of organic material/CaO pellets with high-pressure steam, Energy Fuels, 18(2004), No. 4, p. 1014.

    Article  CAS  Google Scholar 

  34. G.N. Okolo, R.C. Everson, H.W.J.P. Neomagus, M.J. Roberts, and R. Sakurovs, Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques, Fuel, 141(2015), p. 293.

    Article  CAS  Google Scholar 

  35. Y.B. Yao and D.M. Liu, Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals, Fuel, 95(2012), p. 152.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Nos. U1610101 and 21776288) and the Green Process Manufacturing Innovation Research Institute, Chinese Academy of Sciences (No. IAGM-2019-A09). Chuan Wang would like to acknowledge the funding support from Vinnova (Dn: 2018-05293).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-zhong Gong or Chuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Xz., Zhang, Jq., Wang, Z. et al. Development of calcium coke for CaC2 production using calcium carbide slag and coking coal. Int J Miner Metall Mater 28, 76–87 (2021). https://doi.org/10.1007/s12613-020-2049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2049-5

Keywords

Navigation