Skip to main content
Log in

One-Loop Effective Action: Nonlocal Form Factors and Renormalization Group

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We review and present full details of the Feynman diagram based and the heat-kernel method based calculations of the simplest nonlocal form factors in the one-loop contributions of a massive scalar field. The paper has pedagogical and introductory purposes and is intended to help the reader in better understanding the existing literature on the subject. The functional calculations are based on the solution by Avramidi and Barvinsky and Vilkovisky for the heat kernel and are performed in curved space-time. One of the important points is that the main structure of nonlocalities is the same as in the flat background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There was also an earlier calculation of the gravitational form factors with temperature [18], but without an analysis of decoupling.

  2. Indeed, there are finite nonlocal surface terms related to \(a_{1}\), and these are regularization-independent. One can learn about this aspect in [4, 13].

REFERENCES

  1. R. Utiyama and B. S. DeWitt, “Renormalization of a classical gravitational field interacting with quantized matter fields,” J. Math. Phys. 3, 608 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  2. Ya. B. Zeldovich and A. A. Starobinsky, “Particle production and vacuum polarization in an anisotropic gravitational field,” Sov. Phys. JETP 34, 1159 (1972) [Zh. Eksp. Teor. Fiz. 61, 2161 (1971)].

    ADS  Google Scholar 

  3. E. V. Gorbar and I. L. Shapiro, “Renormalization group and decoupling in curved space,” JHEP 02, 021 (2003); hep-ph/0210388.

  4. A. Codello and O. Zanusso, “On the non-local heat kernel expansion,” J. Math. Phys. 54, 013513 (2013); arXiv: 1203.2034.

    Article  ADS  MathSciNet  Google Scholar 

  5. T. S. Bunch and L. Parker, “Feynman Propagator in Curved Space-Time: A Momentum Space Representation,” Phys. Rev. D 20, 2499 (1979).

    Article  ADS  Google Scholar 

  6. F. Sobreira, B. J. Ribeiro, and I. L. Shapiro, “Effective Potential in Curved Space and Cut-Off Regularizations,” Phys. Lett. B 705 , 273 (2011); arXiv: 1107.2262.

    Article  ADS  MathSciNet  Google Scholar 

  7. I. L. Buchbinder, A. Rairis Rodrigues, E. A. dos Reis, and I. L. Shapiro, “Quantum aspects of Yukawa model with scalar and axial scalar fields in curved space-time,” Eur. Phys. J. C 79, 1002 (2019); arXiv: 1910.01731.

  8. B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, 1965).

    MATH  Google Scholar 

  9. A. O. Barvinsky and G. A. Vilkovisky, “The generalized Schwinger-DeWitt technique in gauge theories and quantum gravity,” Phys. Rep. 119, 1 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  10. I. G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher-derivative quantum gravity (PhD thesis, Moscow University, 1986); I. G. Avramidi, “Covariant studies of nonlocal structure of effective action,” Sov. J. Nucl. Phys. 49, 735 (1989) [Yad. Fiz. 49, 1185 (1989), in Russian]; I. G. Avramidi, Heat kernel and quantum gravity (Springer-Verlag, 2000).

  11. A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 2: Second order in the curvature. General algorithms,” Nucl. Phys. B 333, 471 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  12. E. V. Gorbar and I. L. Shapiro, “Renormalization group and decoupling in curved space: II. The Standard Model and beyond,” JHEP 06, 004 (2003); hep-ph/0303124.

  13. S. A. Franchino-Vilas, T. de Paula Netto, I. L. Shapiro, and O. Zanusso, “Form factors and decoupling of matter fields in four-dimensional gravity,” Phys. Lett. B 790, 229 (2019); arXiv: 1812.00460.

  14. G. de Berredo-Peixoto, E. V. Gorbar, and I. L. Shapiro, “On the renormalization group for the interacting massive scalar field theory in curved space,” Class. Quantum Grav. 21, 2281 (2004); hep-th/0311229.

  15. I. L. Shapiro and J. Solà, “Massive fields temper anomaly-induced inflation,” Phys. Lett. B 530, 10 (2002); hep-ph/0104182.

    Article  ADS  Google Scholar 

  16. A. M. Pelinson, I. L. Shapiro, and F. I. Takakura, “On the stability of the anomaly-induced inflation,” Nucl. Phys. B 648, 417 (2003); hep-ph/0208184.

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Appelquist and J. Carazzone, “Infrared singularities and massive fields,” Phys. Rev. D 11, 2856 (1975).

    Article  ADS  Google Scholar 

  18. Y. V. Gusev and A. I. Zelnikov, “Finite temperature nonlocal effective action for quantum fields in curved space,” Phys. Rev. D 59, 024002, (1999); hep-th/9807038.

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Salam, “Divergent integrals in renormalizable field theories,” Phys. Rev. 84, 426 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  20. S.-B. Liao, “Connection between momentum cutoff and operator cutoff regularizations,” Phys. Rev. D 53, 2020 (1996).

    Article  ADS  Google Scholar 

  21. G. Leibbrandt, “Introduction to the technique of dimensional regularization,” Mod. Phys. Rep. 47, 849 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  22. B. L. Nelson and P. Panangaden, “Scaling behavior of interacting quantum fields in curved space-time,” Phys. Rev. D 25, 1019 (1982).

    Article  ADS  Google Scholar 

  23. I. L. Buchbinder, “On Renormalization group equations in curved space-time,” Theor. Math. Phys. 61, 393 (1984).

    MathSciNet  Google Scholar 

  24. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity (IOP Publishing, Bristol, 1992).

    Google Scholar 

  25. M. Asorey, J. L. López, and I. L. Shapiro, “Some remarks on high derivative quantum gravity,” Int. Journ. Mod. Phys. A 12, 5711 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  26. I. L. Shapiro, “Effective action of vacuum: semiclassical approach,” Class. Quantum Grav. 25, 103001 (2008); arXiv: 0801.0216.

  27. Ya. B. Zeldovich and A. A. Starobinsky, “Rate of particle production in gravitational fields,” JETP Lett. 26, 252 (1977).

    ADS  Google Scholar 

  28. A. Dobado and A. L. Maroto, “Particle production from nonlocal gravitational effective action,” Phys. Rev. D 60, 104045 (1999); gr-qc/9803076.

    Article  ADS  Google Scholar 

  29. A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 3: Spectral representations of the third order form-factors,” Nucl. Phys. B 333, 512 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, and V. V. Zhitnikov, “The one loop effective action and trace anomaly in four dimensions,” Nucl. Phys. B 439, 561 (1995); hep-th/9404187.

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Asorey, E. V. Gorbar, and I. L. Shapiro, “Universality and ambiguities of the conformal anomaly,” Class. Quantum Grav. 21, 163 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. J. Duff, “Twenty years of the Weyl anomaly,” Class. Quantum Grav. 11, 1387 (1994); hep-th/9308075.

  33. N. D. Birell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).

    Book  Google Scholar 

  34. T. G. Ribeiro and I. L. Shapiro, “Scalar model of effective field theory in curved space,” JHEP 1910, 163 (2019); arXiv: 1908.01937.

  35. V. Ilisie, Concepts in Quantum Field Theory. A Practitioner’s Toolkit (Springer, 2016).

    Book  Google Scholar 

  36. J. F. Donoghue, “Leading quantum correction to the Newtonian potential,” Phys. Rev. Lett. 72, 2996 (1994); gr-qc/9310024; J. F. Donoghue, ‘General relativity as an effective field theory: The leading quantum corrections,” Phys. Rev. D 50, 3874 (1994); gr-qc/9405057.

Download references

Funding

This work of I.Sh. was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq under the grant 303635/2018-5 and Fundaзão de Amparo à Pesquisa de Minas Gerais—FAPEMIG under the project APQ-01205-16.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Poliane de Morais Teixeira, Ilya L. Shapiro or Tiago G. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, P.d., Shapiro, I.L. & Ribeiro, T.G. One-Loop Effective Action: Nonlocal Form Factors and Renormalization Group. Gravit. Cosmol. 26, 185–199 (2020). https://doi.org/10.1134/S0202289320030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320030123

Navigation