Skip to main content
Log in

Interacting Holographic Dark Energy, the Present Accelerated Expansion and Black Holes

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the evolution of the universe by assuming an integrated model, which involves interacting dark energy and the holographic principle with the Hubble scale as an IR cutoff. First we determine the interaction rate at which matter is converting to dark energy. At the next step, we evaluate the equation of state parameter which describes the nature of dark energy. Our result predicts that the present state of the universe is dominated by quintessence type dark energy, and it will become phantom dominated in the near future. Again, our analysis successfully addresses the problem of present accelerated expansion of the universe and softens the coincidence problem. We also find that the universe was previously undergoing a decelerated phase of expansion and a transition from deceleration to acceleration should have occurred at a time \(t_{q=0}=0.732t_{0}\), where \(t_{0}\) is the present age of the universe. Finally, we discuss the evolution of black holes in this environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. P. de Bernardis et al., Nature 404, 955 (2000).

    Article  ADS  Google Scholar 

  4. S. Hanany et al., Astrophys. J. 545, L5 (2000).

    Article  ADS  Google Scholar 

  5. C. R. Contaldi, H. Hoekstra and A. Lewis, Phys. Rev. Lett. 90, 221303 (2003).

    Article  ADS  Google Scholar 

  6. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).

    Article  ADS  Google Scholar 

  7. S. Cole et al., Mon. Not. R. Astron. Soc. 362, 505 (2005).

    Article  ADS  Google Scholar 

  8. V. Springel et al., Nature (London) 440, 1137 (2006).

    Article  ADS  Google Scholar 

  9. D. N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007).

    Article  Google Scholar 

  10. P. A. R. Ade et al., Astronomy and Astrophys. 594 A, 13 (2016).

  11. B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).

    Article  ADS  Google Scholar 

  12. R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  13. N. Bahcall et al., Science 284, 1481 (1999).

    Article  ADS  Google Scholar 

  14. C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).

    Article  ADS  Google Scholar 

  15. R. R. Caldwell, M. Kamionkowski, and N. V. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).

    Article  ADS  Google Scholar 

  16. E. Babichev, V. Dokuchaev, and Yu. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004).

    Article  ADS  Google Scholar 

  17. U. Alam, V. Sahni, T. D. Saini, and A. A. Starobinsky, Mon. Not. Roy. Astron. Soc. 354, 275 (2004).

    Article  ADS  Google Scholar 

  18. A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001).

    Article  ADS  Google Scholar 

  19. M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 66, 043507 (2002).

    Article  ADS  Google Scholar 

  20. S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2013).

    Article  ADS  Google Scholar 

  21. S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D 70, 043528 (2004).

    Article  ADS  Google Scholar 

  22. G.‘tHooft, “Dimensional reduction in quantum gravity,” gr-qc/9310026.

  23. L. Susskind, J. Math. Phys. (N. Y.) 34, 6377 (1995).

    Article  ADS  Google Scholar 

  24. A. G. Cohen, D. B. Kaplan, and A. Nelson, Phys. Rev. Lett. 82, 4971 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Cohen, D. Kaplan, and A. Nelson, Phys. Rev. Lett. 85, 1610 (2000).

    Article  MathSciNet  Google Scholar 

  26. R. Horvat, Phys. Rev. D 70, 087301 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Li, Phys. Lett. B 603, 1 (2004).

    Article  ADS  Google Scholar 

  28. N. Banerjee and D. Pavon, Phys. Lett. B 647, 477 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  29. G. R. Farrar and P. J. E. Peebles, Astrophys. J. 604, 1 (2004).

    Article  ADS  Google Scholar 

  30. W. Yang, A. Mukherjee, E. Di Valentino, and S. Pan, Phys. Rev. D 98, 123527 (2018).

    Article  ADS  Google Scholar 

  31. W. Yang et al., JCAP 1809, 019 (2018).

  32. J. E. Gonzalez, H. H. B. Silva, R. Silva, and J. S. Alcaniz, Eur. Phys. J. C 78, 730 (2018).

    Article  ADS  Google Scholar 

  33. A. A. Costa, R. C. G. Landim, B. Wang, and E. Abdalla, Eur. Phys. J. C 78, 746 (2018).

    Article  ADS  Google Scholar 

  34. C. Wetterich, Astron. Astrophys. 301, 321 (1995).

    ADS  Google Scholar 

  35. L. Amendola, Phys. Rev. D 62, 043511 (2000).

    Article  ADS  Google Scholar 

  36. I. Zlatev, L. M. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999).

    Article  ADS  Google Scholar 

  37. A. P. Billyard and A. A. Coley, Phys. Rev. D 61, 083503 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  38. G. Olivares, F. Atrio-Barandela, and D. Pavn, Phys. Rev. D 71, 063523 (2005).

    Article  ADS  Google Scholar 

  39. S. del Campo, R. Herrera, and D. Pavn, JCAP 0901, 020 (2009).

  40. J. Valiviita, R. Maartens, and E. Majerotto, Mon. Not. Roy. Astron. Soc. 402, 2355 (2010).

    Article  ADS  Google Scholar 

  41. S. Pan and S. Chakraborty, Eur. Phys. J. C 73, 2575 (2013).

    Article  ADS  Google Scholar 

  42. W. Yang and L. Xu, Phys. Rev. D 90, 083532 (2014).

    Article  ADS  Google Scholar 

  43. S. Pan, S. Bhattacharya, and S. Chakraborty, Mon. Not. Roy. Astron. Soc. 452, 3038 (2015).

    Article  ADS  Google Scholar 

  44. A. Mukherjee and N. Banerjee, Class. Quant. Grav. 34, 035016 (2017).

    Article  ADS  Google Scholar 

  45. B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon, Rep. Prog. Phys. 79, 096901 (2016).

    Article  ADS  Google Scholar 

  46. E. Majerotto, J. Valiviita, and R. Maartens, Mon. Not. Roy. Astron. Soc. 402, 2344 (2010).

    Article  ADS  Google Scholar 

  47. W. Yang, S. Pan, and D. F. Mota, Phys. Rev. D 96, 123508 (2017).

    Article  ADS  Google Scholar 

  48. W. Yang, S. Pan, and J. D. Barrow, Phys. Rev. D 97, 043529 (2018).

    Article  ADS  Google Scholar 

  49. B. Nayak and L. P. Singh, Mod. Phys. Lett. A 24, 1785 (2009).

    Article  ADS  Google Scholar 

  50. G. Sethi, A. Dev, and D. Jain, Phys. Lett. B 624, 135 (2005).

    Article  ADS  Google Scholar 

  51. Zong-Hong Zhu et. al., Astron. Astrophys. 483, 15 (2008).

    Article  ADS  Google Scholar 

  52. A. Dolgov, V. Halenka, and I. Tkachev, J. Cosmo. Astropart. Phys. 1410, 047 (2014).

  53. Y. Yang and Y. Gong, “The evidence of cosmic acceleration and observational constraints,” arXiv: 1912.07375.

  54. J. F. Jesus, R. Valentim, A. A. Escobal, and S. H. Pereira, “Gaussian process estimation of transition redshift,” arXiv: 1909.00090.

  55. M. V. dos Santos, R. R. R. Reis, and I. Waga, JCAP 1602, 066 (2016).

  56. A. Katz and A. Riotto, JCAP 11, 011 (2016).

  57. Ya. B. Zeldovich and I. D. Novikov, Sov. Astron. A. J. 10, 602 (1967).

    ADS  Google Scholar 

  58. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  ADS  Google Scholar 

  59. J. D. Barrow, E. J. Copeland, E. W. Kolb, and A. R. Liddle, Phys. Rev. D 43, 977 (1991).

    Article  ADS  Google Scholar 

  60. A. S. Majumdar, P. Das Gupta, and R. P. Saxena, Int. J. Mod. Phys. D 4, 517 (1995).

    Article  ADS  Google Scholar 

  61. N. Upadhyay, P. Das Gupta, and R. P. Saxena, Phys. Rev. D 60, 063513 (1999).

    Article  ADS  Google Scholar 

  62. V. I. Dokuchaev, Yu. N. Eroshenko, and S. G. Rubin, Astron. Rep. 52, 779 (2008).

    Article  ADS  Google Scholar 

  63. K. J. Mack, J. P. Ostriker, and M. Ricotti, Astrophys. J. 665, 1277 (2007).

    Article  ADS  Google Scholar 

  64. D. Blais, C. Kiefer, and D. Polarski, Phys. Lett. B 535, 11 (2002).

    Article  ADS  Google Scholar 

  65. D. Blais, T. Bringmann, C. Kiefer, and D. Polarski, Phys. Rev. D 67, 024024 (2003).

    Article  ADS  Google Scholar 

  66. A. Barrau, D. Blais, G. Boudoul, and D. Polarski, Ann. Phys. (Leipzig) 13, 114 (2004).

    Article  ADS  Google Scholar 

  67. A. S. Majumdar, Phys. Rev. Lett. 90, 031303 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  68. A. S. Majumdar, D. Gangopadhyay, and L. P. Singh, Mon. Not. Roy. Astron. Soc. 385, 1647 (2008).

    Article  ADS  Google Scholar 

  69. B. Nayak, L. P. Singh, and A. S. Majumdar, Phys. Rev. D 80, 023529 (2009).

    Article  ADS  Google Scholar 

  70. B. Nayak and L. P. Singh, Phys. Rev. D 82, 127301 (2010).

    Article  ADS  Google Scholar 

  71. B. Nayak and M. Jamil, Phys. Lett. B 709, 118 (2012).

    Article  ADS  Google Scholar 

  72. B. Nayak and L. P. Singh, Pramana—J. Phys. 76, 173 (2011).

    Google Scholar 

  73. B. Nayak and L. P. Singh, Eur. Phys. J. C 71, 1837 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENT

I am thankful to Prof. L.P. Singh of Utkal University, Bhubaneswar for useful discussions.

Funding

This work is financially supported by UGC Start-Up-Grant Project of Dr. Bibekananda Nayak having Letter No. F. 30-390/2017 (BSR) of University Grants Commission, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibekananda Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, B. Interacting Holographic Dark Energy, the Present Accelerated Expansion and Black Holes. Gravit. Cosmol. 26, 273–280 (2020). https://doi.org/10.1134/S020228932003010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228932003010X

Navigation