Skip to main content
Log in

Short-Wave Approximation for Macroscopic Cosmology with Higgs Scalar Field

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Based on the macroscopic equations of cosmological evolution obtained earlier by the author, a closed set of macroscopi Einstein equations in the short-wave approximation for perturbations of the scalar Higgs and gravitational fields has been obtained and examined. The resulting exact solutions of the macroscopic equations are determined by three microscopic parameters, depending on the spectrum of perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We would like to note note that such a description should be based on the density matrix, but the corresponding mathematical formalism for quantum gravity has not yet been developed.

  2. Everywhere in this paper we adopt the Planck system of units \(\hbar=c=G=1\), the definition of the Riemann and Ricci tensors coincide with those from the book by Landau and Lifshitz [8], the metric signature is \(\textrm{diag}(-1,-1,-1,+1)\); the Latin indices take values \(\overline{1,4}\), the Greek ones \(\overline{1,3}\).

  3. See the details in [1].

REFERENCES

  1. Yu. G. Ignat’ev, Theor. Math. Phys. 203 (3) (2020), to be published.

  2. A. A. Starobinsky, JETP Lett. 82, 169 (2005).

    Article  ADS  Google Scholar 

  3. A. A. Starobinsky, Lectures on Modern Problem of Cosmology (Proc. Int. School on Gravitation and Cosmology “Gtacos-2014” Ed. Yu. G. Ignat’ev, Kazan Federal University Press, 2014), pp. 48–59; http://rgs.vniims.ru/main.html.

  4. S. R. Green and R. M. Wald, Class. Quantum Grav. 31, 234003 (2014); arXiv: 1407.8084.

  5. Chiu Man Ho and Stephen D. H. Hsu, JHEP 1504, 086 (2015); arXiv: 1501.00708.

  6. T. Buchert, M. Carfora, G. F. R. Ellis, E. W. Kolb, M. A. H. MacCallum, et al., Class. Quantum Grav. 32, 215021 (2015); arXiv: 1505.07800.

  7. S. R. Green and R. M. Wald, arXiv: 1506.06452.

  8. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford–NY–Toronto–Sydney–Paris–Frankfurt, 1971).

  9. Yu. G. Ignat’ev, Grav. Cosmol. 22, 264–269 (2016); arXiv: 1509.01235.

  10. Yu. G. Ignat’ev and I. A. Kokh, Grav. Cosmol. 25, 24 (2019).

    Article  ADS  Google Scholar 

  11. Yurii Ignat’ev, Alexander Agathonov, Mikhail Mikhailov, and Dmitry Ignatyev. Astrophys Space Sci. 357, 61 (2015).

    Article  ADS  Google Scholar 

  12. D.S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, Singapore, 2011).

    Book  Google Scholar 

  13. Yu. G. Ignat’ev, Grav. Cosmol. 13, 59–79 (2007).

    ADS  Google Scholar 

  14. Yu. G. Ignat’ev, Grav. Cosmol. 25, 354–361 (2019).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. G. Ignat’ev or D. Yu. Ignat’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignat’ev, Y.G., Ignat’ev, D.Y. Short-Wave Approximation for Macroscopic Cosmology with Higgs Scalar Field. Gravit. Cosmol. 26, 249–258 (2020). https://doi.org/10.1134/S0202289320030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320030081

Navigation