Skip to main content
Log in

Effects of functional groups for CO2 capture using metal organic frameworks

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Metal organic frameworks (MOFs) are promising adsorbents for CO2 capture. Functional groups on organic linkers of MOFs play important roles in improving the CO2 capture ability by enhancing the CO2 sorption affinity. In this work, the functionalization effects on CO2 adsorption were systematically investigated by rationally incorporating various functional groups including −SO3H, −COOH, −NH2, −OH, −CN, −CH3 and −F into a MOF-177 template using computational methods. Asymmetries of electron density on the functionalized linkers were intensified, introducing significant enhancements of the CO2 adsorption ability of the modified MOF-177. In addition, three kinds of molecular interactions between CO2 and functional groups were analyzed and summarized in this work. Especially, our results reveal that −SO3H is the best-performing functional group for CO2 capture in MOFs, better than the widely used −NH2 or −F groups. The current study provides a novel route for future MOF modification toward CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao C, Chen X, Anthony E J, Jiang X, Duan L, Wu Y, Dong W, Zhao C. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39(6): 515–534

    Article  Google Scholar 

  2. Wang M, Liu J, Shen F, Cheng H, Dai J, Long Y. Theoretical study of stability and reaction mechanism of CuO supported on ZrO2 during chemical looping combustion. Applied Surface Science, 2016, 367: 485–492

    Article  CAS  Google Scholar 

  3. Darensbourg D J, Chung W C, Wang K, Zhou H C. Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catalysis, 2014, 4(5): 1511–1515

    Article  CAS  Google Scholar 

  4. Yu J, Wang S, Yu H. Experimental studies and rate-based simulations of CO2 absorption with aqueous ammonia and piperazine blended solutions. International Journal of Greenhouse Gas Control, 2016, 50: 135–146

    Article  CAS  Google Scholar 

  5. Rochelle G T. Amine scrubbing for CO2 capture. Science, 2009, 325(5948): 1652–1654

    Article  CAS  PubMed  Google Scholar 

  6. Lin Y. Metal organic framework membranes for separation applications. Current Opinion in Chemical Engineering, 2015, 8: 21–28

    Article  Google Scholar 

  7. Lin J Y. Molecular sieves for gas separation. Science, 2016, 353(6295): 121–122

    Article  CAS  PubMed  Google Scholar 

  8. Wu Y, Chen X, Fan M, Jiang G, Kong Y, Bland A E. Development of K and N based composite CO2 sorbents (KN) dried with a supercritical fluid. Chemical Engineering Journal, 2015, 262: 1192–1198

    Article  CAS  Google Scholar 

  9. Yang Q, Zhong C, Chen J F. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569

    Article  CAS  Google Scholar 

  10. Yang S, Liu Z, Yan X, Liu C, Zhang Z, Liu H, Chai L. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO2 catalyst. Energy & Fuels, 2019, 33(11): 11380–11388

    Article  CAS  Google Scholar 

  11. Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27

    Article  CAS  Google Scholar 

  12. Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Advances in CO2 capture technology—the US department of energy’s carbon sequestration program. International Journal of Greenhouse Gas Control, 2008, 2(1): 9–20

    Article  CAS  Google Scholar 

  13. Liu H, Xie X, Chen H, Yang S, Liu C, Liu Z, Yang Z, Li Q, Yan X. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. Fuel, 2020, 261: 116367

    Article  CAS  Google Scholar 

  14. Zhang Z, Yao Z Z, Xiang S, Chen B. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy & Environmental Science, 2014, 7(9): 2868–2899

    Article  CAS  Google Scholar 

  15. Gu C, Liu J, Hu J, Wu D. Highly selective separations of C2H2/C2H4 and C2H2/C2H6 in metal-organic frameworks via pore environment design. Industrial & Engineering Chemistry Research, 2019, 58(43): 19946–19957

    Article  CAS  Google Scholar 

  16. Hu J, Liu Y, Liu J, Gu C. Chelation of transition metals into MOFs as a promising method for enhancing CO2 capture: a computational study. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16835

    Article  CAS  Google Scholar 

  17. Li S, Chung Y G, Simon C M, Snurr R Q. High-throughput computational screening of multivariate metal-organic frameworks (MTV-MOFs) for CO2 capture. Journal of Physical Chemistry Letters, 2017, 8(24): 6135–6141

    Article  CAS  Google Scholar 

  18. An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579

    Article  CAS  PubMed  Google Scholar 

  19. Pal A, Chand S, Das M C. A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation. Inorganic Chemistry, 2017, 56(22): 13991–13997

    Article  CAS  PubMed  Google Scholar 

  20. Zheng S T, Bu J T, Li Y, Wu T, Zuo F, Feng P, Bu X. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. Journal of the American Chemical Society, 2010, 132(48): 17062–17064

    Article  CAS  PubMed  Google Scholar 

  21. Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report. Chemical Society Reviews, 2011, 40(2): 498–519

    Article  CAS  PubMed  Google Scholar 

  22. Hu J, Liu Y, Liu J, Gu C. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: the significant role of functional groups. Fuel, 2017, 200: 244–251

    Article  CAS  Google Scholar 

  23. Xiang Z, Leng S, Cao D. Functional group modification of metal-organic frameworks for CO2 capture. Journal of Physical Chemistry C, 2012, 116(19): 10573–10579

    Article  CAS  Google Scholar 

  24. Zheng B, Bai J, Duan J, Wojtas L, Zaworotko M J. Enhanced CO2 binding affinity of a high-uptakerht-type metal-organic framework decorated with acylamide groups. Journal of the American Chemical Society, 2010, 133(4): 748–751

    Article  PubMed  CAS  Google Scholar 

  25. An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and amino-decorated pores. Journal of the American Chemical Society, 2009, 132(1): 38–39

    Article  CAS  Google Scholar 

  26. Ye Y, Zhang H, Chen L, Chen S, Lin Q, Wei F, Zhang Z, Xiang S. Metal-organic framework with rich accessible nitrogen sites for highly efficient CO2 capture and separation. Inorganic Chemistry, 2019, 58(12): 7754–7759

    Article  PubMed  CAS  Google Scholar 

  27. Hu J, Liu Y, Liu J, Gu C, Wu D. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256: 25–31

    Article  CAS  Google Scholar 

  28. Liu Y, Liu J, Chang M, Zheng C. Effect of functionalized linker on CO2 binding in zeolitic imidazolate frameworks: density functional theory study. Journal of Physical Chemistry C, 2012, 116(32): 16985–16991

    Article  CAS  Google Scholar 

  29. Liu Y, Liu J, Chang M, Zheng C. Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks. Fuel, 2012, 95: 521–527

    Article  CAS  Google Scholar 

  30. Zhang Y B, Furukawa H, Ko N, Nie W, Park H J, Okajima S, Cordova K E, Deng H, Kim J, Yaghi O M. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. Journal of the American Chemical Society, 2015, 137(7): 2641–2650

    Article  CAS  PubMed  Google Scholar 

  31. Accelrys Software Inc. Materials Studio Release Notes, release 4.4. Accelrys Software Inc.: San Diego, CA, 2008

    Google Scholar 

  32. Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L, et al. A water stable metal-organic framework with optimal features for CO2 capture. Angewandte Chemie International Edition, 2013, 52(39): 10316–10320

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y X, Chen Y Z, Hu Y, Huang G, Yu S H, Jiang H L. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(46): 14976–14980

    CAS  Google Scholar 

  34. Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37(15): 1248–1257

    Article  CAS  Google Scholar 

  35. Gu C, Liu J, Hu J, Wu D. Metal-organic frameworks chelated by zinc fluorides for ultra-high affinity to acetylene during C2/C1 separations. Fuel, 2020, 266: 117037

    Article  CAS  Google Scholar 

  36. Yang Y, Liu J, Wang Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Progress in Energy and Combustion Science, 2020, 79: 100844

    Article  Google Scholar 

  37. Wang Z, Liu J, Yang Y, Liu F, Ding J. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst. Proceedings of the Combustion Institute, 2019, 37(3): 2967–2975

    Article  CAS  Google Scholar 

  38. Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. AMn2O4 (A = Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 2020, 388: 121738

    Article  CAS  PubMed  Google Scholar 

  39. Ikeda A, Nakao Y, Sato H, Sakaki S. Binding energy of transition-metal complexes with large p-conjugate systems. Density functional theory vs post-Hartree-Fock methods. Journal of Physical Chemistry A, 2007, 111(30): 7124–7132

    Article  CAS  Google Scholar 

  40. Ramsahye N, Maurin G, Bourrelly S, Llewellyn P, Serre C, Loiseau T, Devic T, Ferey G. Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47(V) by density functional theory. Journal of Physical Chemistry C, 2008, 112(2): 514–520

    Article  CAS  Google Scholar 

  41. Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

    Article  CAS  Google Scholar 

  42. Lee T B, Kim D, Jung D H, Choi S B, Yoon J H, Kim J, Choi K, Choi S H. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 2007, 120(3–4): 330–335

    Article  CAS  Google Scholar 

  43. Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl. Journal of Hazardous Materials, 2020, 383: 121156

    Article  CAS  PubMed  Google Scholar 

  44. Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(7): 1676–1682

    Article  CAS  Google Scholar 

  45. Rappé A K, Casewit C J, Colwell K, Goddard W III, Skiff W. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035

    Article  Google Scholar 

  46. Momany F A. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. Journal of Physical Chemistry, 1978, 82(5): 592–601

    Article  CAS  Google Scholar 

  47. Campañá C, Mussard B, Woo T K. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. Journal of Chemical Theory and Computation, 2009, 5(10): 2866–2878

    Article  PubMed  CAS  Google Scholar 

  48. Argueta E, Shaji J, Gopalan A, Liao P, Snurr R Q, Gómez-Gualdrón D A. Molecular building block-based electronic charges for high-throughput screening of metal-organic frameworks for adsorption applications. Journal of Chemical Theory and Computation, 2018, 14(1): 365–376

    Article  CAS  PubMed  Google Scholar 

  49. Manz T A, Sholl D S. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. Journal of Chemical Theory and Computation, 2010, 6(8): 2455–2468

    Article  CAS  PubMed  Google Scholar 

  50. Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197

    Article  CAS  Google Scholar 

  51. Torrisi A, Bell R G, Mellot-Draznieks C. Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: a combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168: 225–238

    Article  CAS  Google Scholar 

  52. Gu C, Liu J, Hu J, Wu D. Highly efficient separations of C2H2 from C2H2/CO and C2H2/H2 in metal-organic frameworks with ZnF2 chelation: a molecular simulation study. Fuel, 2020, 271: 117598

    Article  CAS  Google Scholar 

  53. Steiner T, Desiraju G R. Distinction between the weak hydrogen bond and the van der Waals interaction. Chemical Communications, 1998, (8): 891–892

    Article  Google Scholar 

  54. Paulini R, Müller K, Diederich F. Orthogonal multipolar interactions in structural chemistry and biology. Angewandte Chemie International Edition, 2005, 44(12): 1788–1805

    Article  CAS  PubMed  Google Scholar 

  55. Jeziorski B, Moszynski R, Szalewicz K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994, 94(7): 1887–1930

    Article  CAS  Google Scholar 

  56. Shao Y, Gan Z, Epifanovsky E, Gilbert A T B, Wormit M, Kussmann J, Lange A W, Behn A, Deng J, Feng X, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113(2): 184–215

    Article  CAS  Google Scholar 

  57. Fioretos K A, Psofogiannakis G M, Froudakis G E. Ab-initio study of the adsorption and separation of NOx and SOx gases in functionalized IRMOF ligands. Journal of Physical Chemistry C, 2011, 115(50): 24906–24914

    Article  CAS  Google Scholar 

  58. Gu C, Liu Y, Liu J, Hu J, Wang W. Ab initio study of gas adsorption in metal-organic frameworks modified by lithium: the significant role of Li-containing functional groups. Journal of Physical Chemistry C, 2018, 122(32): 18395–18404

    Article  CAS  Google Scholar 

  59. Gu C, Liu J, Hu J, Wang W. Metal-organic frameworks grafted by univariate and multivariate heterocycles for enhancing CO2 capture: a molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(6): 2195–2205

    Article  CAS  Google Scholar 

  60. Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999

    Article  CAS  PubMed  Google Scholar 

  61. Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67

    Article  CAS  PubMed  Google Scholar 

  62. Chowdhury P, Bikkina C, Meister D, Dreisbach F, Gumma S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous and Mesoporous Materials, 2009, 117(1–2): 406–413

    Article  CAS  Google Scholar 

  63. Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón D A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51676079 and 21773104), Fundamental Research Funds for the Central Universities (No. 2019kfyR-CPY021) and China Scholarship Council (No. 201906160014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Liu, Y., Wang, W. et al. Effects of functional groups for CO2 capture using metal organic frameworks. Front. Chem. Sci. Eng. 15, 437–449 (2021). https://doi.org/10.1007/s11705-020-1961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1961-6

Keywords

Navigation