Skip to main content
Log in

Transversely isotropic magnetoactive elastomers: theory and experiments

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The current contribution is concerned with the development of novel constitutive equations for anisotropic magnetoactive elastomers (MAEs). A hyperelastic material model for an incompressible magnetoelastic medium representing transversely isotropic MAEs has been developed to investigate their response behavior in the presence of the applied magnetic field while undergoing finite deformation. Transversely isotropic MAE samples in circular cylindrical geometry with 15% iron particle volume fraction are then fabricated and experimentally tested to measure their permeability and torque–twist response. The experimental results have then been effectively utilized to identify the constant material parameters in the proposed material model. Finally, the accuracy and validity of the proposed constitutive equations are demonstrated through the comparison of the simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boczkowska, A., Awietj, S.: Microstructure and properties of magnetorheological elastomers. In: Boczkowska, A. (ed.) Advanced Elastomers—Technology, Properties and Applications. InTech, New York (2012)

    Google Scholar 

  2. Farshad, M., Benine, A.: Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004)

    Google Scholar 

  3. Coquelle, E., Bossis, G.: Mullins effect in elastomers filled with particles aligned by a magnetic field. Int. J. Solids Struct. 43(25–26), 7659–7672 (2006)

    MATH  Google Scholar 

  4. Menzel, A.M.: Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links. Arch. Appl. Mech. 89(1), 17–45 (2018)

    Google Scholar 

  5. Bellan, C., Bossis, G.: Field dependence of viscoelastic properties of Mr Elastomers. Int. J. Mod. Phys. B 16(17–18), 2447–2453 (2012)

    Google Scholar 

  6. Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10(4–5), 555–569 (2000)

    Google Scholar 

  7. Kallio, M.: The Elastic and Damping Properties of Magnetorheological Elastomers. VTT Publications, New York (2005)

    Google Scholar 

  8. Vicente, J.D., Bossis, G., Lacis, S., Guyot, M.: Permability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J. Magn. Magn. Mater. 251(1), 9 (2002)

    Google Scholar 

  9. Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22(6), 677–680 (2003)

    Google Scholar 

  10. Odenbach, S.: Microstructure and rheology of magnetic hybrid materials. Arch. Appl. Mech. 86(1–2), 269–279 (2016)

    Google Scholar 

  11. Borin, D., Stepanov, G., Dohmen, E.: Hybrid magnetoactive elastomer with a soft matrix and mixed powder. Arch. Appl. Mech. 89(1), 105–117 (2018)

    Google Scholar 

  12. Jolly, M.R., Carlson, J.D., Muñoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7(6), 613–622 (1996)

    Google Scholar 

  13. Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22(3), 245–251 (2003)

    Google Scholar 

  14. Varga, Z., Filipcsei, G., Zrínyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47(1), 227–233 (2006)

    Google Scholar 

  15. Dorfmann, A., Ogden, R.W.: Nonlinear magnetoelastic deformations. Q. J. Mech. Appl. Math. 57(4), 599–622 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Bustamante, R.: Transversely isotropic nonlinear magneto-active elastomers. Acta Mech. 210(3–4), 183–214 (2009)

    MATH  Google Scholar 

  17. Danas, K., Kankanala, S.V., Triantafyllidis, N.: Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60(1), 120–138 (2012)

    Google Scholar 

  18. Kankanala, S.V., Triantafyllidis, N.: On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52(12), 2869–2908 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Saxena, P., Hossain, M., Steinmann, P.: Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers. Proc. Math. Phys. Eng. Sci. 470(2166), 20140082 (2014)

    Google Scholar 

  20. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1–2), 107–128 (1996)

    MATH  Google Scholar 

  21. Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49(1), 1–30 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54(5–6), 525–552 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Merodio, J., Ogden, R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 40(18), 4707–4727 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Nonlinear Mech. 40(2–3), 213–227 (2005)

    MATH  Google Scholar 

  25. Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53(9), 1985–2015 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Kassianidis, F., Ogden, R.W., Merodio, J., Pence, T.J.: Azimuthal shear of a transversely isotropic elastic solid. Math. Mech. Solids 13(8), 690–724 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Horgan, C.O., Murphy, J.G.: Torsion of incompressible fiber-reinforced nonlinearly elastic circular cylinders. J. Elast. 103(2), 235–246 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Horgan, C.O., Murphy, J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders. Int. J. Nonlinear Mech. 47(2), 97–104 (2012)

    Google Scholar 

  29. Destrade, M., Donald, B.M., Murphy, J.G., Saccomandi, G.: At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52(4), 959–969 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Destrade, M., Horgan, C.O., Murphy, J.G.: Dominant negative Poynting effect in simple shearing of soft tissues. J. Eng. Math. 95(1), 87–98 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Hamdaoui, M.E., Merodio, J., Ogden, R.W., Rodríguez, J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids Struct. 51(5), 1188–1196 (2014)

    Google Scholar 

  32. Polignone, D.A., Horgan, C.O.: Cavitation for incompressible anisotropic nonlinearly elastic spheres. J. Elast. 33(1), 27–65 (1993)

    MATH  Google Scholar 

  33. Lu, J., Zhang, L.: Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42(23), 6015–6031 (2005)

    MATH  Google Scholar 

  34. Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–32 (2013)

    Google Scholar 

  35. Murphy, J.G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A Solids 42, 90–96 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Horgan, C.O., Murphy, J.G.: Reverse poynting effects in the torsion of soft biomaterials. J. Elast. 118(2), 127–140 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Moreira, C.S., Nunes, L.C.S.: Effects of fiber orientation in a soft unidirectional fiber-reinforced material under simple shear deformation. Int. J. Nonlinear Mech. 111, 72–81 (2019)

    Google Scholar 

  38. Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162(1–4), 151–164 (1998)

    MATH  Google Scholar 

  39. Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41(14), 3833–3848 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Itskov, M., Ehret, A.E., Mavrilas, D.: A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomech. Model. Mechanobiol. 5(1), 17–26 (2006)

    Google Scholar 

  41. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Google Scholar 

  42. Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54(9), 1952–1971 (2006)

    MATH  Google Scholar 

  43. Pao, Y.-H.: Electromagnetic forces in deformable continua. In: Nevat-Nasser, S. (ed.) Mechanics Today, pp. 209–305. Pergamon Press Inc., New York (1978)

    Google Scholar 

  44. Kovetz, A.: Electromagnet Theory. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  45. Batra, R.C: Elements of continuum mechanics. AIAA Education Series (2006)

  46. Beheshti, A., Sedaghati, R., Rakheja, S.: Finite deformation analysis of isotropic magnetoactive elastomers. Contin. Mech. Thermodyn. 2020, 1–16 (2020)

    MATH  Google Scholar 

  47. Beheshti, A., Sedaghati, R., Rakheja, S.: Development of a small-deformation material model for an isotropic magneto-active elastomer. Acta Mech. 231(6), 2287–2301 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Wien (1984)

    MATH  Google Scholar 

  49. Krupka, J.: Measurement of the complex permittivity, initial permeability, permeability tensor and ferromagnetic linewidth of gyromagnetic materials. Meas. Sci. Technol. 29(9), 092001 (2018)

    Google Scholar 

  50. Schubert, G., Harrison, P.: Magnetic induction measurements and identification of the permeability of magneto-rheological elastomers using finite element simulations. J. Magn. Magn. Mater. 404, 205–214 (2016)

    Google Scholar 

  51. Lopez-Pamies, O.: A new I-1-based hyperelastic model for rubber elastic materials. C. R. Méc. 338(1), 3–11 (2010)

    MathSciNet  MATH  Google Scholar 

  52. Johlitz, M., Diebels, S.: Characterisation of a polymer using biaxial tension tests. Part I: hyperelasticity. Arch. Appl. Mech. 81(10), 1333–1349 (2010)

    MATH  Google Scholar 

  53. van den Bogert, P.A.J., de Borst, R.: On the behaviour of rubberlike materials in compression and shear. Arch. Appl. Mech. 64(2), 136–146 (1994)

    MATH  Google Scholar 

  54. Frollo, I., Krafčík, A., Andris, P., Přibil, J., Dermek, T.: Circular samples as objects for magnetic resonance imaging—mathematical simulation, experimental results. Meas. Sci. Rev. 15(6), 313–318 (2015)

    Google Scholar 

  55. Stolbov, O.V., Raikher, Y.L.: Magnetostriction effect in soft magnetic elastomers. Arch. Appl. Mech. 89(1), 63–76 (2018)

    Google Scholar 

Download references

Acknowledgements

Support from National Science and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Sedaghati.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, A., Sedaghati, R. & Rakheja, S. Transversely isotropic magnetoactive elastomers: theory and experiments. Arch Appl Mech 91, 375–392 (2021). https://doi.org/10.1007/s00419-020-01778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01778-0

Keywords

Navigation