Skip to main content
Log in

Multi-resolution single-pixel imaging via Hadamard ‘pipeline’ coding

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Multi-resolution imaging is one of the key means to obtain the target scene information. The Hadamard matrix, which is orthogonal, is an important modulation matrix for single-pixel imaging. In particular, it can provide a good means for multi-resolution imaging. However, as far as we know, studies of high-efficiency multi-resolution single-pixel imaging are rare in the literature. In view of the practical application requirements of fast multi-resolution imaging, we propose a multi-resolution single-pixel imaging method based on Hadamard ‘pipeline’ coding, which can directly generate two-dimensional Hadamard basis patterns and multi-resolution Hadamard optimization sequences, whereby both the memory consumption and the complexity of coding implementation for multi-resolution imaging can be significantly reduced. The commonly used optimization method of Hadamard optimization sequence implementation and time consumption are also discussed. This method provides a new approach for Hadamard sequence optimization and multi-resolution single-pixel imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.P. Edgar, G.M. Gibson, M.J. Padgett, Nat. Photonics 13(1), 13 (2019)

    Article  ADS  Google Scholar 

  2. M.J. Sun, J.M. Zhang, Sensors 19(3), 732 (2019)

    Article  Google Scholar 

  3. W.K. Yu, Sensors 19(19), 4122 (2019)

    Article  Google Scholar 

  4. P. Nipkow, German Patent 30, 15 (1884)

    Google Scholar 

  5. P.A. Moreau, E. Toninelli, T. Gregory, M.J. Padgett, Laser Photonics Rev. 12(1), 1700143 (2018)

    Article  ADS  Google Scholar 

  6. S. Han, H. Yu, X. Shen, H. Liu, W. Gong, Z. Liu, Appl. Sci. 8(8), 1379 (2018)

    Article  Google Scholar 

  7. J.H. Shapiro, Phys. Rev. A 78(6), 061802 (2008)

    Article  ADS  Google Scholar 

  8. Y. Bromberg, O. Katz, Y. Silberberg, Phys. Rev. A 79(5), 053840 (2009)

    Article  ADS  Google Scholar 

  9. M.J. Sun, Z.H. Xu, L.A. Wu, Opt. Lasers Eng. 100, 18 (2018)

    Article  Google Scholar 

  10. M.J. Padgett, R.W. Boyd, Philos. Trans. R. Soc. A 375(2099), 20160233 (2017)

    Article  ADS  Google Scholar 

  11. M.J. Sun, L.T. Meng, M.P. Edgar, M.J. Padgett, N. Radwell, Sci. Rep. 7(1), 3464 (2017)

    Article  ADS  Google Scholar 

  12. Y.M.L. Wen-Kai Yu, Sensors 23(19), 5135 (2019)

    Google Scholar 

  13. W.K. Yu (2019). arXiv preprint arXiv:1904.13350

  14. S.M.M. Khamoushi, Y. Nosrati, S.H. Tavassoli, Opt. Lett. 40(15), 3452 (2015)

    Article  ADS  Google Scholar 

  15. Z. Zhang, X. Ma, J. Zhong, Nat. Commun. 6, 6225 (2015)

    Article  ADS  Google Scholar 

  16. Z. Zhang, X. Wang, G. Zheng, J. Zhong, Sci. Rep. 7(1), 12029 (2017)

    Article  ADS  Google Scholar 

  17. C. Zhou, T. Tian, C. Gao, W. Gong, L. Song, J. Opt. 21(5), 055702 (2019)

    Article  ADS  Google Scholar 

  18. L. Olivieri, J.S.T. Gongora, L. Peters, V. Cecconi, A. Cutrona, J. Tunesi, R. Tucker, A. Pasquazi, M. Peccianti, Optica 7(2), 186 (2020)

    Article  ADS  Google Scholar 

  19. S.C. Chen, Z. Feng, J. Li, W. Tan, L.H. Du, J. Cai, Y. Ma, K. He, H. Ding, Z.H. Zhai, et al., (2020). arXiv preprint arXiv:2002.10615

  20. Y.H. He, A.X. Zhang, M.F. Li, Y.Y. Huang, B.G. Quan, D.Z. Li, L.A. Wu, L.M. Chen, (2019). arXiv preprint arXiv:1905.10364

  21. M.J. Sun, M.P. Edgar, G.M. Gibson, B. Sun, N. Radwell, R. Lamb, M.J. Padgett, Nat. Commun. 7(1), 1 (2016)

    Google Scholar 

  22. G.M. Gibson, B. Sun, M.P. Edgar, D.B. Phillips, N. Hempler, G.T. Maker, G.P.A. Malcolm, M.J. Padgett, Opt. Express 25(4), 2998 (2017)

    Article  ADS  Google Scholar 

  23. S. Li, X.R. Yao, W.K. Yu, L.A. Wu, G.J. Zhai, Opt. Lett. 38(12), 2144 (2013)

    Article  ADS  Google Scholar 

  24. M.J. Sun, X.Y. Zhao, L.J. Li, Opt. Lett. 43(16), 4049 (2018)

    Article  ADS  Google Scholar 

  25. M.J. Sun, W. Chen, in Propagation Through and Characterization of Atmospheric and Oceanic Phenomena (Optical Society of America, Washington, D.C., 2019), pp. JW2A–19

  26. R.I. Stantchev, D.B. Phillips, P. Hobson, S.M. Hornett, M.J. Padgett, E. Hendry, Optica 4(8), 989 (2017)

    Article  ADS  Google Scholar 

  27. D.B. Phillips, M.J. Sun, J.M. Taylor, M.P. Edgar, S.M. Barnett, G.M. Gibson, M.J. Padgett, Sci. Adv. 3(4), e1601782 (2017)

    Article  ADS  Google Scholar 

  28. L. Wang, S. Zhao, Photonics Res. 4(6), 240 (2016)

    Article  Google Scholar 

  29. M. Abmann, M. Bayer, Sci. Rep. 3(1), 1 (2013)

    Article  Google Scholar 

  30. W.K. Yu, M.F. Li, X.R. Yao, X.F. Liu, L.A. Wu, G.J. Zhai, Opt. Express 22(6), 7133 (2014)

    Article  ADS  Google Scholar 

  31. F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, J. Lancis, Sci. Rep. 5(1), 1 (2015)

    Article  Google Scholar 

  32. H. Ma, A. Sang, C. Zhou, X. An, L. Song, Opt. Commun. 443, 69 (2019)

    Article  ADS  Google Scholar 

  33. M.F. Li, L. Yan, R. Yang, Y.X. Liu, Acta Phys. Sin. 68(6), 064202 (2019)

    Google Scholar 

  34. J.J. Sylvester, Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(232), 461–475 (1867)

    Article  Google Scholar 

  35. J.H. Dinitz, D.R. Stinson, Contemporary Design Theory: A Collection of Surveys, vol. 26 (Wiley, Hoboken, 1992)

    MATH  Google Scholar 

  36. J. Williamson et al., Duke Math. J. 11(1), 65 (1944)

    Article  MathSciNet  Google Scholar 

  37. J.L. Mundy, R.E. Joynson. Pipeline walsh-hadamard transformations. US Patent 3,956,619 (1976)

  38. C.P. Fan, J.F. Yang, IEEE Trans. Signal Process. 45(6), 1669 (1997)

    Article  ADS  Google Scholar 

  39. J. Zhu, Z. Liu, D. Wang, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013) (IEEE, 2013), pp. 677–680

Download references

Acknowledgements

This work is supported by the Science and Technology Planning Project of Jilin Province (Grant no. 20200404141YY); the Special Funds for Provincial Industrial Innovation in Jilin Province (Grant nos. 2018C040-4, 2019C025, 2020C018-4); the Science Foundation of the Education Department of Jilin Province (Grant no. 2019LY508L35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Song or Kang Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Zhao, X., Huang, H. et al. Multi-resolution single-pixel imaging via Hadamard ‘pipeline’ coding. Appl. Phys. B 126, 163 (2020). https://doi.org/10.1007/s00340-020-07512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07512-6

Navigation