Skip to main content
Log in

An algebraic independence result related to a conjecture of Dixmier on binary form invariants

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

In order to better understand the structure of classical rings of invariants for binary forms, Dixmier proposed, as a conjectural homogeneous system of parameters, an explicit collection of invariants previously studied by Hilbert. We generalize Dixmier’s collection and show that a particular subfamily is algebraically independent. Our proof relies on showing certain alternating sums of products of binomial coefficients are nonzero. Along the way we provide a very elementary proof à la Racah, namely, only using the Chu–Vandermonde Theorem, for Dixon’s Summation Theorem. We also provide explicit computations of invariants, for the binary octavic, which can serve as ideal introductory examples to Gordan’s 1868 method in classical invariant theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdesselam, A.: On the volume conjecture for classical spin networks. J. Knot Theory Ramif. 21(3), 1250022, 62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdesselam, A., Chipalkatti, J.: On the Wronskian combinants of binary forms. J. Pure Appl. Algebra 210(1), 43–61 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdesselam, A., Chipalkatti, J.: The higher transvectants are redundant. Ann. Inst. Fourier (Grenoble) 59(5), 1671–1713 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdesselam, A., Chipalkatti, J.: Quadratic involutions on binary forms. Preprint arXiv:1008.3117 [math.AG], extended version of article with same authors and title with reference: Michigan Math. J. 61(2), 279–296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdesselam, A., Chipalkatti, J.: On the reconstruction problem for Pascal lines. Discrete Comput. Geom. 60(2), 381–405 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrews, G.E.: Problems and prospects for basic hypergeometric functions. In: Theory and Application of Special Functions (Proceedings of the Advanced Seminar, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1975), pp. 191–224. Mathematics Research Center, University Wisconsin, Publ., vol. 35, Academic Press, New York (1975)

    Chapter  Google Scholar 

  7. Bedratyuk, L.: A complete minimal system of covariants for the binary form of degree 7. J. Symb. Comput. 44(2), 211–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brion, M.: Invariants et covariants des groupes algébriques réductifs. Lecture notes for the 1996 Monastir summer school “Théorie des Invariants”. http://www-fourier.univ-grenoble-alpes.fr/~mbrion/monastirrev.pdf. Accessed 27 May 2019

  9. Brouwer, A.E., Popoviciu, M.: The invariants of the binary nonic. J. Symb. Comput. 45(6), 709–720 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brouwer, A.E., Popoviciu, M.: The invariants of the binary decimic. J. Symb. Comput. 45(8), 837–843 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brouwer, A.E., Draisma, J., Popoviciu, M.: The degrees of a system of parameters of the ring of invariants of a binary form. Transform. Groups 20(4), 953–967 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  13. Cagliero, L., Szechtman, F.: The classification of uniserial \(\mathfrak{s}\mathfrak{l}(2){\ltimes }V(m)\)-modules and a new interpretation of the Racah–Wigner \(6j\)-symbol. J. Algebra 386, 142–175 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Carnevale, A., Voll, C.: Orbit Dirichlet series and multiset permutations. Monatsh. Math. 186(2), 215–233 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chipalkatti, J.: On Hermite’s invariant for binary quintics. J. Algebra 317(1), 324–353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cléry, F., Faber, C., van der Geer, G.: Covariants of binary sextics and vector-valued Siegel modular forms of genus two. Math. Ann. 369(3–4), 1649–1669 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cröni, H.: Zur Berechnung von Kovarianten von Quantiken. Ph.D. thesis. Univ. des Saarlandes, Saarbrücken (2002)

  18. de Bruijn, N.G.: Asymptotic Methods in Analysis. Corrected reprint of the third edition. Dover Publications Inc, New York (1981)

    Google Scholar 

  19. Derksen, H.: Universal denominators of Hilbert series. J. Algebra 285(2), 586–607 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Derksen, H., Kemper, G.: Computational Invariant Theory. Invariant Theory and Algebraic Transformation Groups. I. Encyclopaedia of Mathematical Sciences 130. Springer, Berlin (2002)

    Google Scholar 

  21. Dixmier, J.: Quelques résultats et conjectures concernant les séries de Poincaré des invariants des formes binaires. Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 36ème année (Paris, 1983–1984), pp. 127–160, Lecture Notes in Mathematics, vol. 1146. Springer, Berlin (1985)

    Google Scholar 

  22. Dixmier, J., Lazard, D.: Le nombre minimum d’invariants fondamentaux pour les formes binaires de degré 7. Portugalia Math. 43(3), 377–392 (1985/86)

  23. Dixon, A.C.: On the sum of the cubes of the coefficients in a certain expansion by the binomial theorem. Messenger Math. 20, 79–80 (1890/1891)

  24. Dixon, A.C.: Summation of a certain series. Proc. Lond. Math. Soc. 35, 284–289 (1903)

    MathSciNet  MATH  Google Scholar 

  25. Fjeldstad, J.E.: A generalization of Dixon’s formula. Math. Scand. 2, 46–48 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gessel, I.M.: Super ballot numbers. J. Symb. Comput. 14(2–3), 179–194 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gordan, P.: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist. J. Reine Angew. Math. 69, 323–354 (1868)

    MathSciNet  MATH  Google Scholar 

  28. Guo, V.J.W., Jouhet, F., Zeng, J.: Factors of alternating sums of products of binomial and \(q\)-binomial coefficients. Acta Arith. 127(1), 17–31 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Hilbert, D.: Ueber einen allgemeinen Gesichtspunkt für invariantentheoretische Untersuchungen im binären Formengebiete, Math. Ann. 28, 381–446 (1886). For English translation see: Hilbert’s Invariant Theory Papers, translated from the German by M. Ackerman, with comments by R. Hermann, Lie Groups: History, Frontiers and Applications, vol. 8, Math. Sci. Press, Brookline, MA (1978)

  30. Igusa, J.-I.: Modular forms and projective invariants. Am. J. Math. 89, 817–855 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kac, V.G.: Root systems, representations of quivers and invariant theory. In: Invariant Theory (Montecatini, 1982), Lecture Notes in Mathematics, vol. 996, pp. 74–108. Springer, Berlin (1983)

    Google Scholar 

  32. Lercier, R., Olive, M.: Covariant algebra of the binary nonic and the binary decimic. In: Bassa, A., Couvreur, A., Kohel, D. (eds.) Arithmetic, Geometry, Cryptography and Coding Theory, Contemporary Mathematics, vol. 686, pp. 65–91. American Mathematical Society, Providence (2017)

    Chapter  MATH  Google Scholar 

  33. Littelmann, P., Procesi, C.: On the Poincaré series of the invariants of binary forms. J. Algebra 133(2), 490–499 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Minnaert, P.: Construction of the superalgebra \(gl(2|2)\) from \(so(3)\) tensor operators and the vanishing of the 6-\(j\) symbol \(\{2~2~2|3/2~3/2~3/2\}\). Europhys. Lett. 12(2), 97–100 (1990)

    Google Scholar 

  35. Olive, M.: About Gordan’s algorithm for binary forms. Found. Comput. Math. 17(6), 1407–1466 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Popov, V.L.: Homological dimension of algebras of invariants. J. Reine Angew. Math. 341, 157–173 (1983)

    MathSciNet  MATH  Google Scholar 

  37. Racah, G.: Theory of complex spectra. II. Phys. Rev. 62, 438–462 (1942)

    Article  Google Scholar 

  38. Shioda, T.: On the graded ring of invariants of binary octavics. Am. J. Math. 89, 1022–1046 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  39. Srinivasa Rao, K., Rajeswari, V., King, R.C.: Solutions of Diophantine equations and degree-one polynomial zeros of Racah coefficients. J. Phys. A 21(9), 1959–1970 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Van der Jeugt, J.: Tensor product of group representations and structural zeros of Racah coefficients. J. Math. Phys. 33(7), 2417–2421 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. von Gall, A.: Das vollständige Formensystem einer binären Form achter Ordnung. Math. Ann. 17, 31–51 (1880)

    Article  MathSciNet  MATH  Google Scholar 

  42. von Gall, A.: Ueber das vollständige Formensystem einer binären Form achter Ordnung. Math. Ann. 17, 139–152 (1880)

    Article  MathSciNet  MATH  Google Scholar 

  43. von Gall, A.: Auszug aus einem Brief an die Redactcion der Annalen. Math. Ann. 17, 456 (1880)

    Article  MathSciNet  MATH  Google Scholar 

  44. von Gall, A.: Das vollständige Formensystem der binären Form 7ter Ordnung. Math. Ann. 31, 318–336 (1888)

    Article  MathSciNet  MATH  Google Scholar 

  45. von Szily, K.: Über die Quadratsummen der Binomialcoefficienten. Math. und Naturw. Ber. aus Ungarn 12, 84–91 (1893/1894)

  46. Weyman, J.: Gordan ideals in the theory of binary forms. J. Algebra 161(2), 370–391 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowlegements

For useful discussions or correspondence the author thanks A. Brouwer, J. Chipalkatti, C. Huneke, C. Krattenthaler and J. Van der Jeugt. The author also thanks the anonymous referee for suggesting useful improvements.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Abdesselam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdesselam, A. An algebraic independence result related to a conjecture of Dixmier on binary form invariants. Res Math Sci 6, 26 (2019). https://doi.org/10.1007/s40687-019-0189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-019-0189-x

Navigation