Skip to main content
Log in

Numerical Methods for a Nonlocal Parabolic Problem with Nonlinearity of Kirchhoff Type

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

The presence of the nonlocal term in the nonlocal problems destroys the sparsity of the Jacobian matrices when solving the problem numerically using finite elementmethod and Newton–Raphson method. As a consequence, computations consume more time and space in contrast to local problems. To overcome this difficulty, this paper is devoted to the analysis of a linearized theta-Galerkin finite element method for the time-dependent nonlocal problem with nonlinearity of Kirchhoff type. Hereby, we focus on time discretization based on θ-time stepping scheme with θ ∈ [½, 1). Some error estimates are derived for the standard Crank–Nicolson (θ = ½), the shifted Crank–Nicolson (θ = ½ + δ, where δ is the time-step) and the general case (θ ≠ ½ + , where k = 0, 1). Finally, numerical simulations that validate the theoretical findings are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chipot, M. and Lovat, B., Some Remarks on Non-Local Elliptic and Parabolic Problems, Nonlin. An.: Theory, Methods Appl., 1997, vol. 30, no. 7, pp. 4619–4627.

    Article  MATH  Google Scholar 

  2. Chipot, M., The Diffusion of a Population Partly Driven by Its Preferences, Arch. Rat. Mech. An., 2000, vol. 155, no. 3, pp. 237–259.

    Article  MathSciNet  MATH  Google Scholar 

  3. Mbehou, M., The Euler–GalerkinFinite ElementMethod forNonlocal Diffusion Problemswith a p-Laplace-Type Operator, Appl. An., 2018; DOI: 10.1080/00036811.2018.1445227.

    Google Scholar 

  4. Mbehou, M., Maritz, R., and Tchepmo, P., Numerical Analysis for a Nonlocal Parabolic Problem, East Asian J. Appl. Math., 2016, vol. 6, no. 4, pp. 434–447.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lions, J., On SomeQuestions in BoundaryValue Problems of Mathematical Physics, North-Holland Math. Stud., 1978, vol. 30, pp. 284–346.

    Article  Google Scholar 

  6. Arosio, A. and Panizzi, S., On the Well-Posedness of the Kirchhoff String, Trans. Am. Math. Soc., 1996, vol. 348, no. 1, pp. 305–330.

    Article  MathSciNet  MATH  Google Scholar 

  7. Mbehou, M., Finite ElementMethod for Nonlocal Hyperbolic-Parabolic Problems of Kirchhoff–Carrier Type in Domains withMoving Boundary (Under review).

  8. Ono, K., On Global Solutions and Blow-Up Solutions of Nonlinear Kirchhoff Strings with Nonlinear Dissipation, J. Math. An. Appl., 1997, vol. 216, no. 1, pp. 321–342.

    Article  MathSciNet  MATH  Google Scholar 

  9. Srivastava, V., Chaudhary, S., Kumar, V.S., and Srinivasan, B., Fully Discrete Finite Element Scheme for Nonlocal Parabolic Problem Involving the Dirichlet Energy, J. Appl. Comput., 2017, vol. 53, nos. 1/2, pp. 413–443.

    Article  MathSciNet  MATH  Google Scholar 

  10. Alves, C., Corrêa, F., and Figueiredo, G., On a Class of Nonlocal Elliptic Problems with Critical Growth, Diff. Equ. Appl., 2010, vol. 2, no. 3, pp. 409–417.

    MathSciNet  MATH  Google Scholar 

  11. Thome´e, V., Galerkin Finite Element Methods for Parabolic Problems, Computational Science and Engineering, Springer, 1984.

    Google Scholar 

  12. Djoko, J., Lubuma, J., and Mbehou, M., On the Numerical Solution of the Stationary Power-Law Stokes Equations: A Penalty Finite Element Approach, J. Sci. Comput., 2016, vol. 69, no. 3, pp. 1058–1082.

    Article  MathSciNet  MATH  Google Scholar 

  13. Douglas, J., Jr. and Dupont, T., GalerkinMethods for Parabolic Equations, SIAM J. Num. An., 1970, vol. 7, no. 4, pp. 575–626.

    Article  MATH  Google Scholar 

  14. Ammi, M.R.S. and Torres, D.F., Numerical Analysis of a Nonlocal Parabolic Problem Resulting from Thermistor Problem, Math. Comput. Simul., 2008, vol. 77, no. 2, pp. 291–300.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mbehou, M., The Theta-Galerkin Finite Element Method for Coupled Systems Resulting from Microsensor Thermistor Problems, Math. Methods Appl. Sci., 2018, vol. 41, no. 4, pp. 1480–1491.

    Article  MathSciNet  MATH  Google Scholar 

  16. Heywood, J.G. and Rannacher, R., Finite-Element Approximation of the Nonstationary Navier–Stokes Problem, Part IV: Error Analysis for Second-Order Time Discretization, SIAM J. Num. An., 1990, vol. 27, no. 2, pp. 353–384.

    Article  MATH  Google Scholar 

  17. Luskin, M., Rannacher, R., and Wendland, W., On the Smoothing Property of the Crank–Nicolson Scheme, Appl. An., 1982, vol. 14, no. 2, pp. 117–135.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P., The Finite Element Method for Elliptic Problems, Amsterdam: North Holland, 1978.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Mbehou or G. Chendjou.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2019, Vol. 22, No. 3, pp. 295–307.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbehou, M., Chendjou, G. Numerical Methods for a Nonlocal Parabolic Problem with Nonlinearity of Kirchhoff Type. Numer. Analys. Appl. 12, 251–262 (2019). https://doi.org/10.1134/S1995423919030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423919030042

Keywords

Navigation