Skip to main content
Log in

Solving fractional-order delay integro-differential equations using operational matrix based on fractional-order Euler polynomials

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present a numerical method to solve fractional-order delay integro-differential equations. We use the operational matrices based on the fractional-order Euler polynomials to obtain numerical solution of the considered equations. By approximating the unknown function and its derivative in terms of the fractional-order Euler polynomials and substituting these approximations into the original equation, the original equation is reduced to a system of nonlinear algebraic equations. The convergence analysis of the proposed method is discussed. Finally, some examples are included to show the accuracy and validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  3. Jafari, H.: Introduction to Fractional Differential Equations. Mazandaran University Press, Mazandaran, Iran (2013)

    Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics. Wiley, London (2014)

    Book  Google Scholar 

  6. Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, p. 2. Wiley, London (1993)

    MATH  Google Scholar 

  7. Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On approximate solutions for two higher-order Caputo–Fabrizio fractional integro-differential equations. Adv. Differ. Equ. 2017(1), 221 (2017)

    Article  MathSciNet  Google Scholar 

  8. Zhang, Y.H.X., Tang, B.: Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 62, 3194–3203 (2011)

    Article  MathSciNet  Google Scholar 

  9. Zhu, L., Fan, Q.B.: Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2333–2341 (2012)

    Article  MathSciNet  Google Scholar 

  10. Wang, Y.X., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 27 (2017)

    Article  MathSciNet  Google Scholar 

  11. Baleanu, D., Darzi, R., Agheli, B.: A reliable mixed method for singular integro-differential equations of non-integer order. Math. Model. Nat. Phenom. 13(1), 4 (2018)

    Article  MathSciNet  Google Scholar 

  12. Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)

    Article  MathSciNet  Google Scholar 

  13. Mokhtary, P.: Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations. J. Comput. Appl. Math. 279, 145–158 (2015)

    Article  MathSciNet  Google Scholar 

  14. Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38, 1434–1448 (2014)

    Article  MathSciNet  Google Scholar 

  15. Wang, Yanxin, Zhuand, Li, Wang, Zhi: Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel. Adv. Differ. Equ. 2018, 254 (2018)

    Article  MathSciNet  Google Scholar 

  16. Sahu, P.K., Saha Ray, S.: A novel Legendre wavelet Petrov–Galerkin method for fractional Volterra integro-differential equations. Comput. Math. Appl. (2016). https://doi.org/10.1016/j.camwa.2016.04.042

    Article  Google Scholar 

  17. Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algorithms 65, 723–743 (2014)

    Article  MathSciNet  Google Scholar 

  18. Nemati, S., Sedaghat, S., Mohammadi, I.: A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 308, 231–242 (2016)

    Article  MathSciNet  Google Scholar 

  19. Wei, Y.X., Chen, Y.P.: Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation. Appl. Numer. Math. 81, 15–29 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wang, Y.X., Zhu, L.: SCW method for solving the fractional integro-differential equations with a weakly singular kernel. Appl. Math. Comput. 275, 72–80 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Kazem, S., Abbasbandy, S., Sunil, K.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37, 5498–5510 (2013)

    Article  MathSciNet  Google Scholar 

  22. Yuzbasi, S., Gok, E., Sezer, M.: Laguerre matrix method with the residual error estimation for a class of delay differential equations. Math. Methods Appl. Sci. 37, 453–463 (2014)

    Article  MathSciNet  Google Scholar 

  23. Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 85(3), 1815–1823 (2016)

    Article  MathSciNet  Google Scholar 

  24. Yang, Y., Huang, Y.: Spectral-collocation methods for fractional pantograph delay-integro differential equations, Adv. Math. Phys. 2013(2013), Article ID 821327, 14 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer. Algorithms 81, 57–77 (2019). https://doi.org/10.1007/s11075-018-0535-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, J., Cao, Y., Xu, Y.: Sinc numerical solution for pantograph Volterra delay-integro-differential equation. Int. J. Comput. Math. 94, 853–865 (2017)

    Article  MathSciNet  Google Scholar 

  27. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309, 493–510 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ockendon, J.R., Tayler, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. Ser. A 322, 447–468 (1971)

    Article  Google Scholar 

  29. Buhmann, M.D., Iserles, A.: Stability of the discretized pantograph differential equation. Math. Comput. 60, 575–589 (1993)

    Article  MathSciNet  Google Scholar 

  30. Trif, D.: Direct operatorial tau method for pantograph-type equations. Appl. Math. Comput. 219, 2194–2203 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Yuzbasi, S., Gok, E., Sezer, M.: Residual correction of the Hermite polynomial solutions of the generalized pantograph equations. Trends Math. Sci. 3(2), 118–125 (2015)

    MathSciNet  Google Scholar 

  32. Shakeri, F., Dehghan, M.: Application of the decomposition method of Adomian for solving the pantograph equation of order m. Z. Naturforschung A 65a, 453–460 (2010)

    Article  Google Scholar 

  33. Sezer, M., Yalcinbas, S., Gulsua, M.: A Taylor polynomial approach for solving generalized pantograph equations with nonhomogenous term. Int. J. Comput. Math. 85(7), 1055–1063 (2008)

    Article  MathSciNet  Google Scholar 

  34. Ali, I., Brunner, H., Tang, T.: Spectral methods for pantograph-type differential and integral equations with multiple delays. Front. Math. China 4(1), 49–61 (2009)

    Article  MathSciNet  Google Scholar 

  35. Dehestani, H., Ordokhani, Y., Razzaghi, M.: A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions. RACSAM 113, 3297–3321 (2019). https://doi.org/10.1007/s13398-019-00694-5

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, H.: Some new results on products of Apostol–Bernoulli and Apostol–Euler polynomials. J. Math. Anal. Appl. 431, 34–46 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the referees of the paper for their valuable suggestions that improved the final form of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abbasbandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezabeyk, S., Abbasbandy, S. & Shivanian, E. Solving fractional-order delay integro-differential equations using operational matrix based on fractional-order Euler polynomials. Math Sci 14, 97–107 (2020). https://doi.org/10.1007/s40096-020-00320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-020-00320-1

Keywords

Navigation