Skip to main content
Log in

Adaptive structure inferences on partially linear error-in-function models with error-prone covariates

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

Model structural inference on semiparametric measurement error models have not been well developed in the existing literature, partially due to the difficulties in dealing with unobservable covariates. In this study, a framework for adaptive structure selection is developed in partially linear error-in-function models with error-prone covariates. Firstly, based on the profile-least-square estimators of the current models, we define two test statistics via generalized likelihood ratio (GLR) test method (Fan et al. in Ann Stat 29(1):153–193, 2001). The proposed test statistics are shown to possess the Wilks-type properties, and a class of new Wilks phenomenon is unveiled in the family of semiparametric measurement error models. Then, we demonstrate that the GLR statistics asymptotically follow chi-squared distributions under null hypotheses. Further, we propose efficient algorithms to implement our methodology and assess the finite sample performance by simulated examples. A real example is given to illustrate the performance of the present methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apanasovich, T. V., Carroll, R. J., & Maity, A. (2009). SIMEX and standard error estimation in semiparametric measurement error models. Electronic Journal of Statistics, 3, 318–348.

    Article  MathSciNet  Google Scholar 

  • Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Measurement error in nonlinear models: A modern perspective. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Carroll, R. J., Fan, J. Q., Gijbels, I., & Wand, M. P. (1997). Generalized partially linear single-index models. Journal of the American Statistical Association, 92(438), 477–489.

    Article  MathSciNet  Google Scholar 

  • Chen, X., & Cui, H. J. (2012). Empirical likelihood inference for parameters in a partially linear errors-in-variables model. Statistics: A Journal of Theoretical and Applied Statistics, 46(6), 745–757.

    Article  MathSciNet  Google Scholar 

  • Cui, H. J., & Kong, E. (2006). Empirical likelihood confidence region for parameters in semi-linear errors-in-variables models. Scandinavian Journal of Statistics, 33(1), 153–168.

    Article  MathSciNet  Google Scholar 

  • Cui, H. J., & Li, R. C. (1998). On parameter estimation for semi-linear errors-in-variables models. Journal of Multivariate Analysis, 64, 1–24.

    Article  MathSciNet  Google Scholar 

  • De Jong, P. (1987). A central limit theorem for generalized quadratic forms. Probability Theory and Related Fields, 75(2), 261–277.

    Article  MathSciNet  Google Scholar 

  • Engle, R. F., Granger, C. W. J., Rice, J., & Weiss, A. (1986). Semiparametric estimates of the relation between weather and electricity sales. Journal of the American Statistical Association, 81(394), 310–320.

    Article  Google Scholar 

  • Fan, J. Q., & Gijbels, I. (1996). Local polynomial modelling and its applications. Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Fan, J. Q., & Jiang, J. C. (2005). Nonparametric inferences for additive models. Journal of the American Statistical Association, 100(471), 890–907.

    Article  MathSciNet  Google Scholar 

  • Fan, J. Q., & Jiang, J. C. (2007). Nonparametric inference with generalized likelihood ratio tests. Test, 16(3), 409–444.

    Article  MathSciNet  Google Scholar 

  • Fan, J. Q., & Truong, Y. K. (1993). Nonparametric regression with errors in variables. The Annals of Statistics, 21(4), 1900–1925.

    Article  MathSciNet  Google Scholar 

  • Fan, J. Q., Zhang, C. M., & Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. The Annals of Statistics, 29(1), 153–193.

    Article  MathSciNet  Google Scholar 

  • Hall, P., & Ma, Y. Y. (2007). Testing the suitability of polynomial models in errors-in-variables problems. The Annals of Statistics, 35(6), 2620–2638.

    Article  MathSciNet  Google Scholar 

  • Härdle, W., Liang, H., & Gao, J. (2000). Partially linear models. Heidelberg: Physica.

    Book  Google Scholar 

  • Hinkley, D., & Schechtman, E. (1987). Conditional bootstrap methods in the mean-shift model. Biometrika, 74(1), 85–93.

    Article  MathSciNet  Google Scholar 

  • Huang, Z. S. (2012). Empirical likelihood for the parametric part in partially linear errors-in-function models. Statistics and Probability Letters, 82(1), 63–66.

    Article  MathSciNet  Google Scholar 

  • Huang, Z. S., & Ding, H. Y. (2017). Statistical estimation for partially linear error-in-variable models with error-prone covariates. Communications in Statistics-Simulation and Computation, 46(8), 6559–6573.

    Article  MathSciNet  Google Scholar 

  • Huang, Z. S., Pang, Z., & Hu, T. (2013). Testing structural change in partially linear single-index models with error-prone linear covariates. Computational Statistics and Data Analysis, 59, 121–133.

    Article  MathSciNet  Google Scholar 

  • Jiang, J. C., Zhou, H. B., Jiang, X. J., & Peng, J. A. (2007). Generalized likelihood ratio tests for the structure of semiparametric additive models. The Canadian Journal of Statistics, 35(3), 381–398.

    Article  MathSciNet  Google Scholar 

  • Li, R. Z., & Liang, H. (2008). Variable selection in semiparametric regression modeling. The Annals of Statistics, 36(1), 261–286.

    Article  MathSciNet  Google Scholar 

  • Li, X. L., You, J. H., & Zhou, Y. (2011). Statistical inference for varying-coefficient models with error-prone covariates. Journal of Statistical Computation and Simulation, 81(12), 1755–1771.

    Article  MathSciNet  Google Scholar 

  • Liang, H. (2000). Asymptotic normality of parametric part in partially linear models with measurement error in the nonparametric part. Journal of Statistical Planning and Inference, 86(1), 51–62.

    Article  MathSciNet  Google Scholar 

  • Liang, H. (2006). Estimation in partially linear models and numerical comparisons. Computational Statistics and Data Analysis, 50(3), 675–687.

    Article  MathSciNet  Google Scholar 

  • Liang, H., Wang, S. J., & Carroll, R. J. (2007). Partially linear models with missing response variables and error-prone covariates. Biometrika, 94(1), 185–198.

    Article  MathSciNet  Google Scholar 

  • Liu, J. X., & Ma, Y. Y. (2019). Locally efficient semiparametric estimators for a class of Poisson models with measurement error. The Canadian Journal of Statistics, 47, 157–181. (in press).

    Article  MathSciNet  Google Scholar 

  • Liu, J. X., Ma, Y. Y., Zhu, L. P., & Carroll, R. J. (2017). Estimation and inference of error-prone covariate effect in the presence of confounding variables. Electronic Journal of Statistics, 11(1), 480–501.

    Article  MathSciNet  Google Scholar 

  • Ma, Y. Y., & Carroll, R. J. (2006). Locally efficient estimators for semiparametric models with measurement error. Journal of the American Statistical Association, 101(476), 1465–1474.

    Article  MathSciNet  Google Scholar 

  • Müller, S., & Vial, C. (2009). Partially linear model selection by the bootstrap. Australian and New Zealand Journal of Statistics, 51(2), 183–200.

    Article  MathSciNet  Google Scholar 

  • Rao, J. N. K., & Scott, A. J. (1981). The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables. Journal of the American Statistical Association, 76(374), 221–230.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric regression. New York: Cambridge University Press.

    Book  Google Scholar 

  • Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society. Series B (Methodological), 50(3), 413–436.

    Article  MathSciNet  Google Scholar 

  • Wahba, G. (1984). Partial spline models for semiparametric estimation of functions of several variables. In Statistical Analysis of Time Series. Proceedings of the Japan U.S. Joint Seminar, Tokyo (pp. 319–329). Tokyo: Institute of Statistical Mathematics.

  • Wang, L. F., Li, H. Z., & Huang, J. H. (2008). Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. Journal of the American Statistical Association, 103(484), 1556–1569.

    Article  MathSciNet  Google Scholar 

  • Xue, L. G., & Liu, Q. (2010). Bootstrap approximation of wavelet estimates in a semiparametric regression model. Acta Mathematica Sinica, English Series, 26(4), 763–778.

    Article  MathSciNet  Google Scholar 

  • Yan, L., & Chen, X. (2014). Empirical likelihood for partly linear models with errors in all variables. Journal of Multivariate Analysis, 130, 275–288.

    Article  MathSciNet  Google Scholar 

  • You, J. H., & Zhou, X. (2005). Bootstrap of a semiparametric partially linear model with autoregressive errors. Statistica Sinica, 15, 117–133.

    MathSciNet  MATH  Google Scholar 

  • Zhang, J., Feng, Z. H., Xu, P. R., & Liang, H. (2017). Generalized varying coefficient partially linear measurement errors models. Annals of the Institute of Statistical Mathematics, 69(1), 97–120.

    Article  MathSciNet  Google Scholar 

  • Zhang, R. Q. (2007). Tests for nonparametric parts on partially linear single index models. Science in China Series A: Mathematics, 50(3), 439–449.

    Article  MathSciNet  Google Scholar 

  • Zhou, Y., & Liang, H. (2009). Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates. The Annals of Statistics, 37(1), 427–458.

    Article  MathSciNet  Google Scholar 

  • Zhu, L. X., & Cui, H. J. (2003). A semi-parametric regression model with errors in variables. Scandinavian Journal of Statistics, 30(2), 429–442.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11471160, 11101114), the National Statistical Science Research Major Program of China (Grant No. 2018LD01), the Fundamental Research Funds for the Central Universities (Grant No. 30920130111015), the Jiangsu Provincial Basic Research Program (Natural Science Foundation) (Grant No. BK20131345) and sponsored by Qing Lan Project. The authors thank the Editor, an Associate Editor and two referees for their constructive comments, which led to significant improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Before demonstrating proofs of the main theorems introduced in Sect. 2, we now give the following conditions used in the paper.

Condition(A)

\((A_{1})\) :

Nonparametric function \(g(\cdot )\) has the Lipschitz continuous second derivative \(g''(\cdot )\).

\((A_{2})\) :

The covariates \(\xi \) and T have a joint density \(p(\xi ,t)\). Further, the marginal density \(f_{T}(t)\) of T is compactly supported, bounded, Lipschitz continuous and bounded away from 0. T has a bounded support \(\mathscr {T}\) and \(\xi \) has a bounded support.

\((A_{3})\) :

The kernel functions \(K(\cdot )\) and \(L(\cdot )\) are symmetric density functions with compact support \([-1,1]\), and they are bounded, nonnegative and Lipschitz continuous.

\((A_{4})\) :

\(E(\xi |T)\)\(E(\xi \xi ^{T}|T)\) and \(E((\xi \xi ^{T})*(\xi \xi ^{T})|T)\) are Lipschitz continuous, where \(G*H\) denotes the Hadamard product of matrices G and H.

\((A_{5})\) :

\(E(\varepsilon ^{4}_{i})<\infty \).

\((A_{6})\) :

The marginal density \(f_{T}(t)\) of T has the bounded kth derivative, where k is a positive integer. The random variable X has a bounded support \(\mathscr {X}\). The density function \(f_{X}(x)\) of X is bounded away from 0 on \(\mathscr {X}\).

\((A_{7})\) :

For each \(T \in \mathscr {T}\), the matrix \(E(\xi \xi ^{T}|T)\) is nonsingular and the matrix \(B=~E(V_{1}V_{1}^{T})\) is positive definite.

\((A_{8})\) :

Let \(h_{j}(t)=E(\hat{\xi }_{ij}|T_i=t),\hat{\xi }_{ij}=\hat{\xi }_j(X_i),1\le i\le n,1\le j\le p\). Both \(g(\cdot )\) and \(h_{j}(\cdot )\) are Lipschitz continuous of order 1.

\((A_{9})\) :

There is a \(d>2\) such that \(E|\xi |^{2d}<\infty \)\(E|X|^{2d}<\infty \), and for \(\delta <2-d^{-1}\), \(n^{2\delta -1}h\rightarrow \infty \), \(n^{2\delta -1}b_{k}\rightarrow \infty \), \(nhb_{k}^{2(r+1)}\rightarrow 0\), where \(\{b_{k}\}^p_{k=1}\) is the bandwidth sequence.

\((A_{10})\) :

\(nh^{8}\rightarrow 0\), \(nh^{2}/(\log n)^{2}\rightarrow \infty \).

\((A_{11})\) :

The \(\phi _{v}(\cdot )\) served as the characteristic function of v is not identically zero. And it is assumed to be ordinary smooth or super smooth.

Lemma

Suppose Conditions \((A_1)\)\((A_4)\) hold, then, uniformly in \(t\in \mathscr {T}\), we have

$$\begin{aligned} \hat{g}_{n}(t)-g(t)=\frac{1}{2}\nu _{2}g''(t)h^2+\frac{1}{n} \sum ^n_{k=1}\frac{1}{f_T(t)}K_{h}(T_k-t) \hat{\varepsilon }_k+o_p\left( \frac{1}{\sqrt{nh}}+h^2\right) . \end{aligned}$$

under \(H_{0}\), \(t\in \mathscr {T}\), \(h\rightarrow 0,~nh^{3/2}\rightarrow \infty \), thus

$$\begin{aligned} \hat{g}_{n}(t)-g(t)=\frac{1}{n}\sum ^n_{k=1} \frac{1}{f_T(t)}K_{h}(T_k-t)\hat{\varepsilon }_k +o_p\left( \frac{1}{\sqrt{nh}}\right) ~\hat{=}e(t)+o_p\left( \frac{1}{\sqrt{nh}}\right) . \end{aligned}$$
(A.1)

where \(\nu _{2}=\int s^2K(s)ds\)\(e(t)=\frac{1}{n}\sum ^n_{k=1}\frac{1}{f_T(t)}K_{h}(T_k-t) \hat{\varepsilon }_k\).

The lemma obtained from Carroll et al. (1997) shows the asymptotic property of \(g(\cdot )\) when \(\beta \) is estimated at the parametric rate. The asymptotic behaviour \(\hat{\beta }_n-\beta =O_p(n^{-1/2})\) can be inferred naturally from Huang and Ding (2017).

Proof of Theorem 1

The proof of Theorem 1 is mainly based on the conclusion of Zhang (2007). Represent the GLR statistic for testing problem (3) as

$$\begin{aligned} \lambda _{ng}=\frac{\frac{1}{2}(RSS_{0g}-RSS_1)}{RSS_1/n}, \end{aligned}$$

the numerator part of \(\lambda _{ng}\) can be inferred as

$$\begin{aligned} \frac{1}{2}(RSS_{0g}-RSS_1)=-\frac{1}{2}\sum ^{n}_{i=1}e^2(W_i)+\sum ^{n}_{i=1}e(W_i)\hat{\varepsilon }_i+o_p(h^{-1/2}), \end{aligned}$$
(A.2)

We prove the numerator formula (A.2) in the first place. By the following simple computations we can derive the correlative residuals sum of squares,

$$\begin{aligned} RSS_{0g}&=\sum ^{n}_{i=1}(Y_i-\check{\beta }^T\hat{\xi }_{i}-\check{\gamma }_0-\check{\gamma }_1W_i)^2\\&~=\sum ^{n}_{i=1}[(\beta ^T\hat{\xi }_i+\gamma _0+\gamma _1W_i+\hat{\varepsilon }_i)-(\check{\beta }^T\hat{\xi }_{i}+\check{\gamma }_0+\check{\gamma }_1W_i)]^2\\&~=\sum ^{n}_{i=1}[(\gamma _0-\check{\gamma }_0)+(\gamma _1-\check{\gamma }_1)W_i+(\beta -\check{\beta })^T\hat{\xi }_i+\hat{\varepsilon }_i]^2\\&~=\sum ^{n}_{i=1}\hat{\varepsilon }^2_i+O_p(1), \end{aligned}$$

Analogously, we can get

$$\begin{aligned} RSS_1&=\sum ^{n}_{i=1}(Y_i-\hat{\beta }^T_n\hat{\xi }_{i}-\hat{g}_n(W_i))^2\nonumber \\&~=\sum ^{n}_{i=1}[(\beta ^T\hat{\xi }_i+g(W_i)+\hat{\varepsilon }_i)-(\hat{\beta }^T_n\hat{\xi }_{i}+\hat{g}_n(W_i))]^2\\&~=\sum ^{n}_{i=1}[(g(W_i)-\hat{g}_n(W_i))+(\beta -\hat{\beta }_n)^T\hat{\xi }_i+\hat{\varepsilon }_i]^2. \end{aligned}$$

Let \(A=g(W_i)-\hat{g}_n(W_i)\), \(B=(\beta -\hat{\beta }_n)^T\hat{\xi }_i\), \(C=\hat{\varepsilon }_i\), by (A.1), we have

$$\begin{aligned} \sum A^2= & {} \sum ^{n}_{i=1}[g(W_i)-\hat{g}_n(W_i)]^2=\sum ^{n}_{i=1}e^2(W_i)+o_p(h^{-1/2}),\\ \sum AC= & {} \sum ^{n}_{i=1}[g(W_i)-\hat{g}_n(W_i)]\hat{\varepsilon }_i=-\sum ^{n}_{i=1}e(W_i)\hat{\varepsilon }_i+o_p(h^{-1/2}). \end{aligned}$$

The previously mentioned formula \(\hat{\beta }_n-\beta =O_p(n^{-1/2})\) concerned with asymptotic property of \(\beta \) results in

$$\begin{aligned} \sum B^2=\sum ^{n}_{i=1}[(\beta -\hat{\beta }_n)^T\hat{\xi }_i]^2=O_p(1),~\sum BC=\sum ^{n}_{i=1}[(\beta -\hat{\beta }_n)^T\hat{\xi }_i]\hat{\varepsilon }_i=O_p(1). \end{aligned}$$

Applying the Kolmogorov’s strong law of large numbers, we can obtain

$$\begin{aligned} \sum AB=\sum ^{n}_{i=1} [g(W_i)-\hat{g}_n(W_i)] [(\beta -\hat{\beta }_n)^T\hat{\xi }_i]=O_p(1). \end{aligned}$$

Then,

$$\begin{aligned} RSS_1&~=\sum (A^2+B^2+C^2)+2\sum (AB+AC+BC)\\&~=\sum ^{n}_{i=1}e^2(W_i)-2\sum ^{n}_{i=1}e(W_i) \hat{\varepsilon }_i+\sum ^{n}_{i=1}\hat{\varepsilon }^2_i+o_p(h^{-1/2}). \end{aligned}$$

The combination of the expressions of \(RSS_{0g}\) and \(RSS_1\) accounts for the establishment of the formula (A.2). According to Zhang (2007), we further deduce

$$\begin{aligned} \frac{1}{2}(RSS_{0g}-RSS_1)&=\frac{1}{n} {\mathop {\sum }^{n}_{\begin{array}{c} i,k=1\\ i\ne k \end{array}}}\frac{\hat{\varepsilon }_k\hat{\varepsilon }_i}{f_T(W_k)}\left( K_h(W_k-W_i)-\frac{1}{2}K_h*K_h(W_k-W_i)\right) \nonumber \\&\quad +\frac{\sigma ^2|\mathscr {T}|}{h}\left( K(0)-\frac{1}{2}\int K^2(s)ds\right) +o_p\left( \frac{1}{\sqrt{h}}\right) \nonumber \\&=W_n+\sigma ^2\mu _n+o_p\left( \frac{1}{\sqrt{h}}\right) , \end{aligned}$$
(A.3)

where,

$$\begin{aligned} W_n&=\frac{1}{n}{\mathop {\sum }^{n}_{\begin{array}{c} i,k=1\\ i\ne k \end{array}}}\frac{\hat{\varepsilon }_k\hat{\varepsilon }_i}{f_T(W_k)}\left( K_h(W_k-W_i)-\frac{1}{2}K_h*K_h(W_k-W_i)\right) ,\\ \mu _n&=\frac{|\mathscr {T}|}{h}\left( K(0)-\frac{1}{2}\int K^2(s)ds\right) . \end{aligned}$$

To demonstrate the formula (A.3), we combine the arguments of Zhang (2007) and (A.1), then

$$\begin{aligned} \frac{1}{2}(RSS_{0g}-RSS_1)&= S_1-S_2, \end{aligned}$$

and,

$$\begin{aligned} S_1&=\sigma ^2\frac{K(0)|\mathscr {T}|}{h}+\frac{1}{n}{\mathop {\sum }^{n}_{\begin{array}{c} i,k=1\\ i\ne k \end{array}}} \frac{\hat{\varepsilon }_i\hat{\varepsilon }_k}{f_T(W_i)}K_h(W_k-W_i) +O_p\left( \frac{1}{\sqrt{nh^2}}\right) ,\\ S_2&\equiv S_{21}+S_{22}+S_{23}+S_{24}\\&=\frac{1}{2n}{\mathop {\sum }^{n}_{\begin{array}{c} j,k=1\\ j\ne k \end{array}}} \frac{\hat{\varepsilon }_k\hat{\varepsilon }_j}{f_T(W_k)h}\int K(s)K\left( s-\frac{W_j-W_k}{h}\right) ds\\&\quad +\frac{\sigma ^2|\mathscr {T}|}{2h}\int K^2(s)ds+O_p\left( 1+\frac{1}{\sqrt{nh^2}} +\frac{1}{nh^2}+\frac{1}{\sqrt{n^2h^3}}\right) , \end{aligned}$$

where,

$$\begin{aligned} S_{21}&=\frac{1}{2n^2}\sum ^n_{i=k}\frac{\hat{\varepsilon }^2_i}{f^2_T(W_i)}K^2_h(0)=O_p\left( \frac{1}{nh^2}\right) ,\\ S_{22}&=\frac{\sigma ^2|\mathscr {T}|}{2h}\int K^2(s)ds+O_p\left( 1+\frac{1}{\sqrt{nh^2}}+\frac{1}{\sqrt{n^2h^3}}\right) ,\\ S_{23}&=O_p\left( \frac{1}{\sqrt{n^2h^3}}\right) ,\\ S_{24}&=\frac{1}{2n}{\mathop {\sum }^{n}_{\begin{array}{c} j,k=1\\ j\ne k \end{array}}}\frac{\hat{\varepsilon }_k\hat{\varepsilon }_j}{f_T(W_k)h}\int K(s)K\left( s-\frac{W_j-W_k}{h}\right) ds +O_p\left( 1+\frac{1}{\sqrt{nh^2}}\right) . \end{aligned}$$

Therefore, the numerator part (A.3) of the GLR statistic \(\lambda _{ng}\) is vindicated. By Zhang (2007), the variance of \(W_n\) can be written as

$$\begin{aligned} Var(W_n)=\sigma ^4\sigma ^2_n(1+o(1)), \end{aligned}$$

where \(\sigma ^2_n=\frac{2|\mathscr {T}|}{h}\int (K(s)-\frac{1}{2}K*K(s))^2ds\). It implies that

$$\begin{aligned} W_n=O_p(\sqrt{1/h}). \end{aligned}$$
(A.4)

Conjoining with (A.3) with (A.4), we obtain the denominator part of \(\lambda _{ng}\),

$$\begin{aligned} \frac{RSS_1}{n}=\frac{RSS_{0g}}{n}-\frac{2\sigma ^2\mu _n}{n}-\frac{2W_n}{n}+o_p\left( \frac{1}{n\sqrt{h}}\right) =\sigma ^2(1+o_p(1)). \end{aligned}$$
(A.5)

We combine the numerator part (A.3) and the denominator part (A.5) of the statistic to derive

$$\begin{aligned} \lambda _{ng}=\frac{\frac{1}{2}(RSS_{0g}-RSS_1)}{RSS_1/n}=\mu _n+\frac{W_n}{\sigma ^2}+o_p\left( \frac{1}{\sqrt{h}}\right) . \end{aligned}$$
(A.6)

De Jong (1987) demonstrated that \(W_n\) is asymptotically normal,

$$\begin{aligned} \frac{W_n}{\sigma ^2\sigma _n} \xrightarrow {L}N(0,1), \end{aligned}$$

then we can get

$$\begin{aligned}\frac{1}{\sigma _n}(\lambda _{ng}-\mu _n)\xrightarrow {L}N(0,1), \quad i.e. \quad r_K\lambda _{ng}\sim _a\chi ^2(r_Kc_K|\mathscr {T}|/h).\end{aligned}$$

This completes the proof of Theorem 1. \(\square \)

Proof of Theorem 2 and 3

Primarily, we have (A.5): \(n^{-1}RSS_{1}=\sigma ^{2}(1+o_{P}(1))\), and \(\hat{g}_{i0}=\sum \nolimits _{j=1}^{n}\omega _{nj}(W_{i})(Y_{j}-\hat{\beta }_{0}^{T}\hat{\xi }_{j})\), \(\hat{g}_{in}=\sum \nolimits _{j=1}^{n}\omega _{nj}(W_{i})(Y_{j}-\hat{\beta }^{T}_n\hat{\xi }_{j})\), then

$$\begin{aligned} RSS_{0\beta }&=\sum \limits _{i=1}^{n}(Y_{i}-\hat{g}_{i0}-\hat{\beta }_{0}^{T}\hat{\xi }_{i})^2 =\sum \limits _{i=1}^{n}\left( Y_{i}-\hat{g}_{in}-\hat{\beta }^{T}_n\hat{\xi }_{i}+(\hat{\beta }_n-\hat{\beta }_{0})^{T}\tilde{\xi }_{i}\right) ^{2} \nonumber \\&=RSS_{1}+Q_{1}+Q_{2}+Q_{3}, \end{aligned}$$

where

$$\begin{aligned} Q_{1}&=\{\tilde{\xi }(\hat{\beta }_n-\hat{\beta }_{0})\}^{T}\{\tilde{\xi }(\hat{\beta }_n-\hat{\beta }_{0})\}, \\ Q_{2}&=(Y-\hat{g}_{n}-\hat{\beta }_n^{T}\hat{\xi })\{\tilde{\xi }(\hat{\beta }_n-\hat{\beta }_{0})\},\\ Q_{3}&=\{\tilde{\xi }(\hat{\beta }_n-\hat{\beta }_{0})\}^{T}(Y-\hat{g}_{n}-\hat{\beta }_n^{T}\hat{\xi }). \end{aligned}$$

Then we can obtain

$$\begin{aligned} Q_{1}=\{\tilde{\xi }(\hat{\beta }_n-\hat{\beta }_{0})\}^{T}\{\tilde{\xi }(\hat{\beta }_n-\hat{\beta }_{0})\} =\hat{\beta }_n^{T}A_0^{T}\{A_0(\tilde{\xi }^{T}\tilde{\xi })^{-1}A_0^{T}\}^{-1}A_0\hat{\beta }_n. \end{aligned}$$

According to the Lemma 5 in Huang and Ding (2017),

$$\begin{aligned} n^{-1}\tilde{\xi }^{T}\tilde{\xi }\rightarrow B, \end{aligned}$$

thus,

$$\begin{aligned} Q_{1}-n\beta ^{T}A_0^{T}(A_0B^{-1}A_0^{T})^{-1}A_0\beta \rightarrow \sigma ^{2}\times \sum \limits _{i=1}^{l}\omega _{i}\chi _{i1}^{2}, \end{aligned}$$
(A.7)

\(Q_{2},Q_{3}\) are negligible in probability. Combing (A.7) and Slutsky’s theorem, we can get

$$\begin{aligned} 2\lambda _{n\beta }-n\sigma ^{-2}\beta ^{T}A_0^{T}(A_0B^{-1}A_0^{T})^{-1}A_0\beta \xrightarrow {L}\sum \limits _{i=1}^{l}\omega _{i}\chi _{i1}^{2}. \end{aligned}$$

We can learn from Rao and Scott (1981) that the distribution \(\varrho _{n}\sum \nolimits _{i=1}^{l}\omega _{i}\chi _{i1}^{2}\) is nearly the same as the \(\chi ^2\) distribution with degrees of freedom l. The proof of Theorem 3 is completed. \(\square \)

The Theorem 2 is the special case of the Theorem 3. Therefore, the proof of Theorem 2 can be completed by the similar arguments and the details are omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Huang, Z. & Ding, H. Adaptive structure inferences on partially linear error-in-function models with error-prone covariates. J. Korean Stat. Soc. 49, 177–199 (2020). https://doi.org/10.1007/s42952-019-00012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-019-00012-0

Keywords

Navigation