Skip to main content
Log in

Semantic classification of mobile robot locations through 2D laser scans

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Previous learning-based methods that rely on 2D laser data to classify indoor robot locations into semantic classes were successful in distinguishing between rooms and corridors. However, the classification accuracy remained low for doorway locations. We propose a semantic place classification method that uses a rule-based doorway detection algorithm followed by a classification scheme that models training data through either K-means clustering or learning vector quantization. We conducted extensive experiments on the Freiburg 79 dataset and compared our method to previous semantic place classification algorithms. The doorway detection algorithm we propose significantly increases the classification accuracy for doorway locations as compared to the state-of-the-art performance. We applied our method, trained on the Freiburg 79 dataset, to Freiburg 52 and ESOGU datasets in order to demonstrate its generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Moon J, Lee B (2018) Scene understanding using natural language description based on 3D semantic graph map. Intell Serv Robot 11(4):347–354

    Article  Google Scholar 

  2. Zhao Z, Chen X (2016) Building 3D semantic maps for mobile robots using RGB-D camera. Intell Serv Robot 9(4):297–309

    Article  Google Scholar 

  3. Mozos ÓM (2010) Semantic labeling of places with mobile robots, Springer tracts in advanced robotics, vol 61. Springer, Berlin

    Book  Google Scholar 

  4. Premebida C, Faria DR, Souza FA, Nunes U (2015) Applying probabilistic mixture models to semantic place classification in mobile robotics. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4265–4270

  5. Goeddel R, Olson E (2016) Learning semantic place labels from occupancy grids using cnns. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3999–4004

  6. Rottmann A, Mozos ÓM, Stachniss C, Burgard W (2005) Semantic place classification of indoor environments with mobile robots using boosting. In: Proceedings of the national conference on artificial intelligence, pp 1306–1311

  7. Courtney JD, Jain AK (1994) Mobile robot localization via classification of multisensor maps. In: Proceedings of the 1994 IEEE international conference on robotics and automation, pp 1672–1678

  8. Mozos ÓM, Stachniss C, Burgard W (2005) Supervised learning of places from range data using adaboost. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 1730–1735

  9. Koenig S, Simmons RG (1998) Xavier: a robot navigation architecture based on partially observable Markov decision process models. In: Kortenkamp D, Bonasso R, Murphy R (eds) Artificial intelligence based mobile robotics: case studies of successful robot systems. MIT Press, pp 91–122

  10. Buschka P, Saffiotti A (2002) A virtual sensor for room detection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 637–642

  11. Althaus P, Christensen HI (2003) Behavior coordination in structured environments. Adv Robot 17(7):657–674

    Article  Google Scholar 

  12. Tapus A, Ramel G, Dobler L, Siegwart R (2004) Topology learning and recognition using Bayesian programming for mobile robot navigation. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3139–3144

  13. Soares S, Araújo R (2014) Semantic place labeling using a probabilistic decision list of adaboost classifiers. Int J Comput Inf Syst Ind Manag Appl 6:548–559

    Google Scholar 

  14. Sousa P, Araújo R, Nunes U (2007) Real-time labeling of places using support vector machines. In: 2007 IEEE international symposium on industrial electronics, pp 2022–2027

  15. Pronobis A, Mozos ÓM, Caputo B, Jensfelt P (2010) Multi-modal semantic place classification. Int J Robot Res 293:298–320

    Article  Google Scholar 

  16. Shi L, Kodagoda S, Dissanayake G (2010a) Laser range data based semantic labeling of places. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 5941–5946

  17. Shi L, Kodagoda S, Dissanayake G (2010b) Multi-class classification for semantic labeling of places. In: 2010 11th international conference on control automation robotics vision, pp 2307–2312

  18. Shi L, Kodagoda S, Dissanayake G (2012) Application of semi-supervised learning with voronoi graph for place classification. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 2991–2996

  19. Shi L, Kodagoda S (2013) Towards generalization of semi-supervised place classification over generalized voronoi graph. Robot Auton Syst 61(8):785–796

    Article  Google Scholar 

  20. Mozos ÓM, Stachniss C, Rottmann A, Burgard W (2007) Using AdaBoost for place labeling and topological map building. In: Thrun S, Brooks R, Durrant-Whyte H (eds) Robotics research. Springer tracts in advanced robotics, vol 28. Springer, Berlin

    Google Scholar 

  21. Mozos ÓM, Triebel R, Jensfelt P, Rottmann A, Burgard W (2007b) Supervised semantic labeling of places using information extracted from sensor data. Robot Auton Syst 55(5):391–402 from Sensors to Human Spatial Concepts

    Article  Google Scholar 

  22. Kaleci B, Senler CM, Dutagaci H, Parlaktuna O (2015) A probabilistic approach for semantic classification using laser range data in indoor environments. In: 2015 international conference on advanced robotics (ICAR), pp 375–381

  23. Elseicy A, Nikoohemat S, Peter M, Oude Elberink S (2018) Space subdivision of indoor mobile laser scanning data based on the scanner trajectory. Remote Sens 10(11):1–26

    Article  Google Scholar 

  24. Nikoohemat S, Peter M, Oude Elberink S, Vosselman G (2018) Semantic interpretation of mobile laser scanner point clouds in indoor scenes using trajectories. Remote Sens 10(11):1–23

    Article  Google Scholar 

  25. Liao Y, Kodagoda S, Wang Y, Shi L, Liu Y (2017) Place classification with a graph regularized deep neural network. IEEE Trans Cogn Dev Syst 9(4):304–315

    Article  Google Scholar 

  26. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  27. Mozos ÓM, Burgard W (2006) Supervised learning of topological maps using semantic information extracted from range data. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 2772–2777

  28. Goerke N, Braun S (2009) Building semantic annotated maps by mobile robots. In: Proceedings of the conference towards autonomous robotic systems, pp 149–156

  29. Nieto-Granda C, Rogers JG, Trevor AJB, Christensen HI (2010) Semantic map partitioning in indoor environments using regional analysis. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 1451–1456

  30. Pronobis A, Jensfelt P (2012) Large-scale semantic mapping and reasoning with heterogeneous modalities. In: 2012 IEEE international conference on robotics and automation, pp 3515–3522

  31. Turner E, Zakhor A (2014) Floor plan generation and room labeling of indoor environments from laser range data. In: 2014 international conference on computer graphics theory and applications (GRAPP), pp 1–12

  32. Barber R, Mata M, Boada MJL, Armingol JM, Salichs MA (2002) A perception system based on laser information for mobile robot topologic navigation. In: IEEE 2002 28th annual conference of the industrial electronics society, pp 2779–2784

  33. Diaz FJ, Stoytchev A, Arkin RC (2001) Exploring unknown structured environments. In: Proceedings of the fourteenth international Florida artificial intelligence research society conference, pp 145–149

  34. ElKaissi M, Elgamel M, Bayoumi M, Zavidovique B (2007) Sedlrf: a new door detection system for topological maps. In: 2006 international workshop on computer architecture for machine perception and sensing, pp 75–80

  35. Cheein FAA, Casano C, Bastos T, Carelli R (2009) Slam-based cross-a-door solution approach for a robotic wheelchair. Int J Adv Robot Syst 6(3):155–164

    Google Scholar 

  36. Gillham M, Howells G, Spurgeon S, Kelly S, Pepper M (2013) Real-time doorway detection and alignment determination for improved trajectory generation in assistive mobile robotic wheelchairs. In: 2013 fourth international conference on emerging security technologies, pp 62–65

  37. Panzarella T, Schwesinger D, Spletzer J (2016) CoPilot: autonomous doorway detection and traversal for electric powered wheelchairs. In: Wettergreen D, Barfoot T (eds) Field and service robotics. Springer tracts in advanced robotics, vol 113. Springer, Cham

    Google Scholar 

  38. Vasudevan S, Gächter S, Nguyen V, Siegwart R (2007) Cognitive maps for mobile robots: an object based approach. Robot Auton Syst 55(5):359–371 from Sensors to Human Spatial Concepts

    Article  Google Scholar 

  39. Kaleci B, Senler CM, Dutagaci H, Parlaktuna O (2015) Rule-based door detection using laser range data in indoor environments. In: 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI), pp 510–517

  40. Kohonen T (2001) Self-organizing maps. In: Schroeder MR, Huang TS (eds) Springer series in information sciences, vol 30. Springer, Berlin

    Google Scholar 

  41. Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203

    Article  Google Scholar 

  42. Kohonen T (1989) Self-organization and associative memory, Springer series in information sciences, vol 8. Springer, Berlin

    Google Scholar 

  43. Borenstein J, Feng L (1995) Umbmark: a benchmark test for measuring odometry errors in mobile robots. In: Proceedings of SPIE–the international society for optical engineering, vol 2591

  44. Mozos ÓM 2D-Based Semantic PLace Labeling Datasets. http://www.detcp.upct.es/Personal/OMartinez/place_data_sets.html. Accessed 20 Aug 2019

  45. Gazebo Robot Simulation Open source robotics foundation (OSRF). http://gazebosim.org/. Accessed 20 Aug 2019

  46. Robot Operating System Open source robotics foundation (OSRF). http://ros.org/. Accessed 20 Aug 2019

  47. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Eskisehir Osmangazi University Scientific Research Project (Project No: 201415012(2013-253)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Kaleci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleci, B., Şenler, Ç.M., Dutağacı, H. et al. Semantic classification of mobile robot locations through 2D laser scans. Intel Serv Robotics 13, 63–85 (2020). https://doi.org/10.1007/s11370-019-00295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-019-00295-6

Keywords

Navigation