Skip to main content
Log in

Micronavigation System to Support a Radar with Synthetic Aperture aboard a Small UAV

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper describes the experience of constructing an integrated SINS/GNSS navigation system for supporting a side-looking synthetic aperture radar, located aboard a small-sized unmanned aerial vehicle (UAV). Key features and factors that should be taken into account when developing a navigation system operated under severe conditions are studied. Flight test results are presented, including the estimates of MEMS-based micronavigation system accuracy. The analysis is based on the radio signals reflected from corner reflectors, as well as radar images obtained by constructing a matched filter based on the micronavigation system data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kondratenkov, G.S. and Frolov, A.Yu., Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli (Radiovision. Radar Systems for Remote Probing of the Earth), Moscow: Radiotekhnika, 2005.

  2. Antipov, V.I., Goryainov, V.T., Kulin, A.N. et al., Radiolokatsionnye stantsii s tsifrovym sintezirovaniem apertury antenny (Radar Stations with Digital Synthesis of Antenna Aperture), V.T. Goryainov ed., Moscow: Radio i svyaz’, 1988.

  3. Carrera, W.G., Goodman, R.S., and Majewski, R.M., Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Boston: Artech House, 1995.

    MATH  Google Scholar 

  4. Kennedy, Th.A., Strapdown Inertial Measurement Units for Motion Compensation for Synthetic Aperture Radars, IEEE AES Magazine, 1988, vol. 3, no. 10, pp. 32–35.

    Article  Google Scholar 

  5. Bilik, V.V., Kovregin, V.N., Chernodarov, A.V. and Patrikeev, A.P., A spatially distributed micronavigation system for a synthetic-aperture radar, Proceedings of the 18th St. Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Concern CSRI Elektropribor, 2011, pp. 185–194.

  6. Krasilshchikov, M.N., Kozorez, D.A., Sypalo, K.I., Samarin, O.F. and Savost’yanov, V.Yu., High-accuracy positioning of phase center of multifunction airborne radar antenna, Giroskopiya i navigatsiya, 2013, no. 2, pp. 14–30.

  7. Bulgakov, S.L., Mikheenkov, Yu.P., Kryuchkov, V.N., Fedoskin, O.I. and Khilevich, D.A., Inertial-satellite navigation system for synthetic aperture radar, Proceedings of the 19th St. Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Concern CSRI Elektropribor, 2012, pp. 163–168.

  8. Kulakova, V.I. and Sokharev, A.Yu., Navigation system for antenna tracking onboard a small UAV, Uspekhi sovremennoi elektroniki, 2017, no. 10, pp. 5–14.

  9. Cao Fuxiang and Bao Zheng, Analysis and Simulation of GPS/SINU Integrated System for Airborne SCR Motion Compensation, Proceedings of the 2001 CIE International Conference on Radar, Beijing, China, 2001, pp. 1173–1177.

  10. Tan, G.W., Motion Compensation Research Based On Motion Sensors, International Conference on Multimedia Technology, Ningbo, China, 2010, pp. 1–4.

  11. Chen, L., Liu, Z., and Fang, J., An accurate Motion Compensation for SCR Imagery based on INS/GPS with Dual-filter Correction, Journal of Navigation, 2019, vol. 72, no. 6, pp. 1399–1416.

    Article  Google Scholar 

  12. Fan, B., Ding, Z., Gao, W., and Long, T., An improved motion compensation method for high resolution UAV SCR imaging, Science China Information Sciences, 2014, vol. 57, no. 12, pp. 1–13.

    Google Scholar 

  13. Aguasca, A., Acevo-Herrera, R., Broquetas, A., Mallorqui, J. J., and Fabregas, X., CRBRES: Light-weight CW/FM SCR sensors for small UAVs, Sensors, 2013, vol. 13, no. 3, pp. 3204–3216.

    Article  Google Scholar 

  14. Zhang, L., Qiao, Z. J., Xing, M., Yang, L., and Bao, Z.A., A robust motion compensation approach for UAV SCR imagery, IEEE Transactions on Geoscience and Remote Sensing, 2012, vol. 50, no. 8, pp. 3202–3218.

    Article  Google Scholar 

  15. https://ru.wikipedia.org/wiki/Orlan-10.

  16. Kulakova, V.I., Method of experimental verification of accuracy of UAV antenna phase center motion parameters determined by navigation system, Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 334–343.

    Article  Google Scholar 

  17. Savage, P.G., Strapdown Analytics. Parts 1 and 2, Maple Plain, MN: Strapdown Associates, 2000.

    Google Scholar 

  18. Emel’yantsev, G.I., and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated Inertial Satellite Systems of Orientation and Navigation), V.G. Peshekhonov, Ed., Concern CSRI Elektropribor, JSC, 2016.

  19. Kolodezhnyi, L.P. and Chernodarov, A.V., Nadezhnost’ i tekhnicheskaya diagnostika (Reliability and Technical Diagnostics), Moscow: Zhukovskii and Gagarin Military Airforce Academy, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kulakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakova, V.I., Nozdrin, S.A., Sokharev, A.Y. et al. Micronavigation System to Support a Radar with Synthetic Aperture aboard a Small UAV. Gyroscopy Navig. 10, 245–255 (2019). https://doi.org/10.1134/S2075108719040102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108719040102

Keywords:

Navigation