Comptes Rendus
Group theory/Number theory
Coset diagrams of the modular group and continued fractions
[Diagrammes de classes du groupe modulaire et fractions continues]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 655-663.

Le diagramme des classes de chaque orbite de l'action du groupe modulaire sur Q(n)=Q(n){} contient un circuit Ci. Dans cette Note, pour tout αQ(n), le chemin menant au circuit Ci et le circuit lui-même sont décrits en termes de fractions continues. Nous montrons que la structure des fractions continues des nombres quadratiques irrationnels réduits est liée à la structure ou au type du circuit. Les trois types de circuits de l'action de V4 sur Q(n) sont également reliés à la structure des fractions continues. L'action du groupe modulaire sur Q(5) est choisie précisément, car un de ses circuits est lié au fait que les rapports des nombres de Fibonacci sont les convergents de la fraction continue du nombre d'or.

The coset diagram for each orbit under the action of the modular group on Q(n)=Q(n){} contains a circuit Ci. For any αQ(n), the path leading to the circuit Ci and the circuit itself are obtained through continued fractions in this paper. We show that the structure of the continued fractions of a reduced quadratic irrational element is weaved with the structure or type of the circuit. The three types of circuits of the action of V4 on Q(n) are also interconnected with the structure of continued fractions. The action of the modular group on Q(5) is chosen specifically because a circuit of it is related to the ratio of the Fibonacci numbers being the solution to the continued fractions of the golden ratio.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.07.002
Ayesha Rafiq 1 ; Qaiser Mushtaq 2

1 Institute of Space Technology, Islamabad, Pakistan
2 The Islamia University of Bahawalpur, Bahawalpur, Pakistan
@article{CRMATH_2019__357_8_655_0,
     author = {Ayesha Rafiq and Qaiser Mushtaq},
     title = {Coset diagrams of the modular group and continued fractions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {655--663},
     publisher = {Elsevier},
     volume = {357},
     number = {8},
     year = {2019},
     doi = {10.1016/j.crma.2019.07.002},
     language = {en},
}
TY  - JOUR
AU  - Ayesha Rafiq
AU  - Qaiser Mushtaq
TI  - Coset diagrams of the modular group and continued fractions
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 655
EP  - 663
VL  - 357
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2019.07.002
LA  - en
ID  - CRMATH_2019__357_8_655_0
ER  - 
%0 Journal Article
%A Ayesha Rafiq
%A Qaiser Mushtaq
%T Coset diagrams of the modular group and continued fractions
%J Comptes Rendus. Mathématique
%D 2019
%P 655-663
%V 357
%N 8
%I Elsevier
%R 10.1016/j.crma.2019.07.002
%G en
%F CRMATH_2019__357_8_655_0
Ayesha Rafiq; Qaiser Mushtaq. Coset diagrams of the modular group and continued fractions. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 655-663. doi : 10.1016/j.crma.2019.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.002/

[1] A. Ash; L. Rudolph The modular symbol and continued fractions in higher dimensions, Invent. Math., Volume 55 (1979) no. 3, pp. 241-250

[2] H. Davenport The Higher Arithmetic: An Introduction to the Theory of Numbers, Cambridge University Press, Cambridge, UK, 1999

[3] D. Rosen A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J., Volume 21 (1954) no. 3, pp. 549-563

[4] J.S. Frame Continued fractions and matrices, Amer. Math. Mon., Volume 56 (1949), pp. 98-103

[5] G.H. Hardy; E.M. Wright An Introduction to the Theory of Numbers, Oxford University Press, 1938

[6] G. Higman; Q. Mushtaq Coset diagrams and relations for PSL(2,Z), Arab Gulf J. Sci. Res., Volume 1 (1983) no. 1, pp. 159-164

[7] S.M. Husnine; M.A. Malik; A. Majeed On ambiguous numbers of an invariant subset Q(km) of Q(m) under the action of the modular group PSL(2,Z), Studia Sci. Math. Hung., Volume 42 (2005) no. 4, pp. 401-412

[8] M.A. Malik; M.A. Zafar Real quadratic irrational numbers and modular group action, Southeast Asian Bull. Math., Volume 35 (2011), pp. 439-445

[9] Y.I. Manin; M. Marcolli Continued fractions, modular symbols, and noncommutative geometry, Sel. Math. New Ser., Volume 8 (2002) no. 3, pp. 475-521

[10] Q. Mushtaq Modular group acting on real quadratic fields, Bull. Aust. Math. Soc., Volume 37 (1988), pp. 303-309

[11] Q. Mushtaq; G.C. Rota Alternating groups as quotients of two generators groups, Adv. Math., Volume 96 (1992) no. 1, pp. 113-121

[12] Q. Mushtaq On word structure of the modular group over finite and real quadratic fields, Discrete Math., Volume 178 (1998), pp. 155-164

[13] R. Qureshi; T. Nakahara Behavior of the ring class numbers of a real quadratic field, Ars Comb., Volume 113 (2014), pp. 257-271

[14] I. Samuel Algebraic Theory of Numbers, Éditions Hermann, Paris, France, 1970

[15] C. Series The modular surface and continued fractions, J. Lond. Math. Soc., Volume 31 (1985) no. 2, pp. 69-80

[16] H.M. Stark An Introduction to Number Theory, MIT Press, 1978

[17] A.J. van der Poorten An introduction to continued fractions, Diophantine Analysis, LMS Lecture Notes in Math., vol. 109, Cambridge University Press, 1986, pp. 99-138

Cité par Sources :

This work was presented at the 13th International Pure Mathematics Conference 2012, Islamabad, Pakistan.

Commentaires - Politique


Ces articles pourraient vous intéresser

An improved method for establishing Fuss' relations for bicentric polygons

Mirko Radić

C. R. Math (2010)