Skip to main content
Log in

Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

This review considers the potential mechanisms of radiomitigative effect of radioprotective drugs in interaction with pathophysiological processes accompanying radiation injury to tissues at the earliest stages of its development. Radiomitigators affect bodily systems throughout the development of primary radiation stress and inflammatory process upon the realization of radiation injury during the primary radiation reaction. Inflammation as a protective body reaction to pathogens represents a self-organized system that commits support and limits the intensity of its manifestation. For this reason, the implementation of the radioprotective effect of radiomitigators, including immunogens, proinflammatory cytokines, steroid hormones, biogenic amines, and purine nucleosides and their synthetic and natural analogs, which stimulate native immunity, depends on its initial state and the severity of radiation injury of the body. The inverse negative relation in response to the action of proinflammatory cytokines, which is manifested as induction of the synthesis of anti-inflammatory cytokines and hematopoietic growth factors (primarily, granulocyte colony–stimulating factor), promotes the activation of myelopoiesis and their antiapoptotic action. The interaction of the immunogen effect and radiation stress depends on pharmacodynamics and features of the realization of the radioprotective properties of drugs. The implementation of the action of radiomitigators depends on the functioning of the antioxidant system of the body, because it can be exhausted under the influence of inflammation. In this case, postradiation oxidative toxemia induces injuries to vital parenchymatous organs. This is observed under the influence of proinflammatory cytokines at combined radiation injuries. All of the listed groups of radiomitigators have identical radioprotective activity (DRF = 1.2–1.3). The absence of expressed side effects, good tolerance of radiomitigators by humans, and the duration of their possible effective application after irradiation are the key indices for assessment of their prospects in radiation accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abais, J.M., Xia, M., Zhang, Y., et al., Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signaling, 2015, vol. 22, no. 13, pp. 1111–1129.

    Article  CAS  Google Scholar 

  2. Ainsworth, E.J., From endotoxins to newer immunomodulators: survival-promoting effects of microbial polysaccaride complexes in irradiated animals, Pharmacol. Ther., 1988, vol. 39, nos. 1–3, pp. 223–241.

    Article  CAS  PubMed  Google Scholar 

  3. Ainsworth, E.J. and Chase, H.B., Effect of microbial antigens on irradiation mortality in mice, Proc. Soc. Exp. Biol. Med., 1959, vol. 102, pp. 483–485.

    Article  CAS  PubMed  Google Scholar 

  4. Ainsworth, E.J. and Mitchell, F.A., Increased survival of irradiated dogs given typhoid vaccine before or after irradiation, Radiat. Res., 1968, vol. 34, no. 4, pp. 669–679.

    Article  CAS  PubMed  Google Scholar 

  5. Alsbeih, G., Al-Meer, R.S., Al-Harbi, N., et al., Gender bias in individual radiosensitivity and the association with genetic polymorphic variations, Radiother. Oncol., 2016, vol. 119, no. 2, pp. 236–243.

    Article  PubMed  Google Scholar 

  6. Andrushchenko, V.N., Ivanov, A.A., and Mal’tsev, V.N., Antiradiation effect of substances of microbial origin, Radiats. Biol., Radioekol., 1996, vol. 36, no. 2, pp. 195–208.

    CAS  Google Scholar 

  7. Asadullina, N.R., Usacheva, A.M., and Gudkov, S.V., Protection of mice against X-ray injuries by the post-irradiation administration of inosine-5'-monophosphate, J. Radiat. Res., 2012, vol. 53, no. 2, pp. 211–216.

    Article  CAS  PubMed  Google Scholar 

  8. Ayaloglu-Butun, F., Terzioglu-Kara, E., Tokcaer-Keskin, Z., and Akcali, K.C., The effect of estrogen on bone marrow-derived rat mesenchymal stem cell maintenance: inhibiting apoptosis through the expression of Bcl-xL and Bcl-2, Stem Cell Rev., 2012, vol. 8, no. 2, pp. 393–401.

    Article  CAS  Google Scholar 

  9. Bai, P. and Virág, L., Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes, FEBS Lett., 2012, vol. 586, no. 21, pp. 3771–3777. https://doi.org/10.1016/j.febslet.2012.09.026

    Article  CAS  PubMed  Google Scholar 

  10. Bajrami, B., Zhu, H., Kwak, H.-J., et al., G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling, J. Exp. Med., 2016, vol. 213, no. 10, p. 1999. https://doi.org/10.1084/jem.20160393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berbée, M., Fu, Q., Garg, S., et al., Pentoxifylline enhances the radioprotective properties of γ-tocotrienol: differential effects on the hematopoietic, gastrointestinal and vascular systems, Radiat. Res., 2011, vol. 175, no. 3, pp. 297–306. https://doi.org/10.1667/RR2399.1

    Article  CAS  PubMed  Google Scholar 

  12. Bigildeev, A.E., Zezina, E.A., and Drize, N.J., The effects of interleukin-1 beta and gamma-quantum braking radiation on mesenchymal progenitor cells, Mol. Biol., 2017, vol. 51, no. 3, pp. 393–403.

    Article  CAS  Google Scholar 

  13. Blondal, H., Modification of acute irradiation injury in rats by dextran, Br. J. Radiol., 1957, vol. 30, pp. 219–222.

    Article  CAS  PubMed  Google Scholar 

  14. Boorman, G.A., Luster, M.I., Dean, J.H., and Wilson, R.E., The effect of adult exposure to diethylstilbestrol in the mouse on macrophage function and numbers, J. Reticuloendothel. Soc., 1980, vol. 28, no. 6, pp. 547–560.

    CAS  PubMed  Google Scholar 

  15. Budagov, R.S. and Ul’yanova, L.P., Comparative analysis of pro-inflammatory cytokines in the plasma of irradiated mice with combined radiation damage, Radiats. Biol., Radioekol., 2000, vol. 40, no. 2, pp. 188–191.

    CAS  Google Scholar 

  16. Budagov, R.S. and Ul’yanova, L.P., The effects of modulators of cytokine levels on the survival of mice and rats with combined radiation-thermal damage, Radiats. Biol., Radioekol., 2004a, vol. 44, no. 4, pp. 392–397.

  17. Budagov, R.S. and Ul’yanova, L.P., The role of interleukin-6 (IL-6) in the pathogenesis of combined radiation-thermal lesions, Radiats. Biol., Radioekol., 2004b, vol. 44, no. 4, pp. 398–402.

    CAS  Google Scholar 

  18. Budagov, R.S. and Ul’yanova, L.P., Consequences of systemic inflammatory reactions in the pathogenesis of aggravation of outcomes of combined radiation-thermal lesions, Radiats. Biol., Radioekol., 2005, vol. 45, no. 2, pp. 191–195.

    CAS  Google Scholar 

  19. Burdelya, L.G., Krivokrysenko, V.I., Tallant, T.C., et al., An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models, Science, 2008, vol. 320, no. 5873, pp. 226–230. https://doi.org/10.1126/science.1154986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bykov, V.N., Drachev, I.S., Panchenko, A.V., et al., Experimental evaluation of the antiradiation efficiency of beta-extradiol, indometafen, and VR-S2 preparation, Radiats. Biol., Radioekol., 2019, vol. 59, no. 1, pp. 29–43.

    Google Scholar 

  21. Carta, S., Lavieri, R., and Rubartelli, A., Different members of the IL-1 family come out in different ways: DAMPs vs. cytokines? Front. Immunol., 2013, vol. 4, p. 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chang, C.C., Tsai, W.L., Jiang, J.R., and Cheng, W., The acute modulation of norepinephrine on immune responses and genes expressions via adrenergic receptors in the giant freshwater prawn, Macrobrachium rosenbergii,Fish Shellfish Immunol., 2015, vol. 46, no. 2, pp. 459–467. https://doi.org/10.1016/j.fsi.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, C., Yi, J., Wang, R., et al., Protection of spleen tissue of γ-ray irradiated mice against immunosuppressive and oxidative effects of radiation by adenosine 5'-monophosphate, Int. J. Mol. Sci., 2018, vol. 19, no. 5, p. e1273. https://doi.org/10.3390/ijms19051273

    Article  CAS  PubMed  Google Scholar 

  24. Chernov, G.A., Sharygin, V.L., Pulatova, M.K., et al., Molecular mechanisms of action of radioprotector indometafen: biosynthetic and bioenergetic aspects, Izv. Ross. Akad. Nauk, Ser. Biol., 1996, no. 3, pp. 282–291.

  25. Chertkov, K.S., Preparations for early therapy of acute radiation sickness, in Radiatsionnaya meditsina (Radiation Medicine), Il’in, L.A., Ed., Moscow: IzdAT, 2004, vol. 1, pp. 728–739.

  26. Chertkov, K.S. and Petrov, V.M., Pharmacochemical protection and substitutive treatment as components of the radiation safety system of astronauts during an expedition to Mars, Aviakosm. Ekol. Med., 1993, vol. 27, nos. 5–6, pp. 27–32.

    Google Scholar 

  27. Chwee, J.Y., Khatoo, M., Tan, N.Y.J., and Gasser, S., Apoptotic cells release IL1 receptor antagonist in response to genotoxic stress, Cancer Immunol. Res., 2016, vol. 4, no. 4, pp. 294–302.

    Article  CAS  PubMed  Google Scholar 

  28. Cole, L.J. and Ellis, M.E., Study on the chemical nature of the radiation protection factor in mouse spleen. I. Enzymatic inactivation by deoxyribonuclease and trypsin, Radiat. Res., 1954, vol. 1, no. 4, pp. 347–358.

    Article  CAS  PubMed  Google Scholar 

  29. Comitato, R., Nesaretnam, K., Leoni, G., et al., A novel mechanism of natural vitamin E tocotrienol activity: involvement of ERβ signal transduction, Am. J. Physiol. Endocrinol. Metab., 2009, vol. 297, no. 2, p. e427–e437. https://doi.org/10.1152/ajpendo.00187.2009

    Article  CAS  PubMed  Google Scholar 

  30. Cosentino, M., Marino, F., and Maestroni, G.J., Sympathoadrenergic modulation of hematopoiesis: a review of available evidence and of therapeutic perspectives, Front. Cell. Neurosci., 2015, vol. 9, p. 302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Davis, T.A., Mungunsukh, O., Zins, S., et al., Genistein induces radioprotection by hematopoietic stem cell quiescence, Int. J. Radiat. Biol., 2008, vol. 84, no. 9, pp. 713–726. https://doi.org/10.1080/09553000802317778

    Article  CAS  PubMed  Google Scholar 

  32. De Vasconcelos, N. M., van Opdenbosch, N., and Lamkanfi, M., Inflammasomes as polyvalent cell death platforms, Cell Mol. Life Sci., 2016, vol. 73, nos. 11–12, pp. 2335–2347.

    Article  CAS  PubMed  Google Scholar 

  33. Dowling, J.K. and Mansell, A., Toll-like receptors: the Swiss army knife of immunity and vaccine development? Clin. Transl. Immunol., 2016, vol. 5, no. 5, p. e85. https://doi.org/10.1038/cti.2016.22

    Article  CAS  Google Scholar 

  34. Dowling, J.K. and Dellacasagrande, J., Toll-like receptors: ligands, cell-based models and readouts for receptor action, Methods Mol. Biol., 2016, vol. 1390, pp. 3–27.

    Article  CAS  PubMed  Google Scholar 

  35. Du, J., Cheng, Y., Dong, S., et al., Zymosan-a protects the hematopoietic system from radiation-induced damage by targeting TLR2 signaling pathway, Cell Physiol. Biochem., 2017, vol. 43, no. 2, pp. 457–464. https://doi.org/10.1159/000480472

    Article  CAS  PubMed  Google Scholar 

  36. Dürk, T., Panther, E., Muller, T., et al., 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes, Int. Immunol., 2005, vol. 17, pp. 599–606. https://doi.org/10.1093/intimm/dxh242

    Article  CAS  PubMed  Google Scholar 

  37. Farese, A.M., Cohen, M.V., Katz, B.P., et al., Filgrastim improves survival in lethally irradiated nonhuman primates, Radiat. Res., 2013, vol. 179, no. 1, pp. 89–100. https://doi.org/10.1667/RR3049.1

    Article  CAS  PubMed  Google Scholar 

  38. Farese, A.M., Brown, C.R., Smith, C.P., et al., The ability of filgrastim to mitigate mortality following LD50/60 total-body irradiation is administration time-dependent, Health Phys., 2014, vol. 106, no. 1, pp. 39–47. https://doi.org/10.1097/HP.0b013e3182a4dd2c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fibbe, W.E., van Damme, J., Billiau, A., et al., Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor, Blood, 1988, vol. 71, no. 2, pp. 430–435.

    Article  CAS  PubMed  Google Scholar 

  40. Friedlander, R.M., Gagliardini, V., Rotello, R.J., and Yuan, J., Functional role of interleukin 1 beta [IL-1 beta] in IL-1 beta-converting enzyme-mediated apoptosis, J. Exp. Med., 1996, vol. 184, no. 2, pp. 717–724.

    Article  CAS  PubMed  Google Scholar 

  41. Fu, Y., Wang, Y., Du, L., et al., Resveratrol inhibits ionizing irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 14105–14118. https://doi.org/10.3390/ijms140714105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gluzman-Poltorak, Z., Vainstein, V., and Basile, L.A., Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure, Am. J. Hematol., 2014, vol. 89, no. 9, pp. 868–873.

    Article  CAS  PubMed  Google Scholar 

  43. Grace, M.B., Singh, V.K., Rhee, J.G., et al., 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis, J. Radiat. Res., 2012, vol. 53, no. 6, pp. 840–853. https://doi.org/10.1093/jrr/rrs060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grebenyuk, A.N. and Legeza, V.I., Protivoluchevye sovistva interleikina-1 (Antiradiation Properties of Interleukin-1), St. Petersburg: Foliant, 2012.

  45. Grebenyuk, A.N., Bykov, V.N., Myasnikov, V.A., et al., The effect of indometafen on the survival and bone marrow hematopoiesis of mice affected by acute external exposure of γ- or X-ray radiation, Radiats. Biol., Radioekol., 2011, vol. 51, no. 4, pp. 464–470.

    CAS  Google Scholar 

  46. Grebenyuk, A.N., Bykov, V.N., Myasnikov, V.A., et al., Evaluation of the radioprotective effect of β-estradiol by survival and bone marrow hematopoiesis of mice exposed to X-ray radiation, Radiats. Biol., Radioekol., 2012, vol. 52, no. 2, pp. 175–180.

    CAS  Google Scholar 

  47. Grebenyuk, A.N., Basharin, V.A., Tarumov, R.A., et al., Evaluation of the radioprotective effect of genistein by survival and bone marrow hematopoiesis of mice exposed to X-ray radiation, Radiats. Biol., Radioekol., 2013, vol. 53, no. 5, pp. 468–474.

    CAS  Google Scholar 

  48. Grekh, I.F., Protective effect of some pyrimidine derivatives from X-rays in white mice, Med. Radiol., 1958, vol. 3, no. 6, p. 67.

    Google Scholar 

  49. Gudkov, V.S. and Bruskov, V.I., Guanozin i inozin (riboksin). Antioksidantnye i radiozashchitnye svoistva (Guanosine and Inosine (Riboxin): Antioxidant and Radioprotective Properties), Saarbrucken: LAP Lambert Academic, 2011.

  50. Gudkov, S.V., Shtarkman, I.N., Smirnova, V.S., et al., Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice, Radiat. Res., 2006, vol. 165, no. 5, pp. 538–545.

    Article  CAS  PubMed  Google Scholar 

  51. Gudkov, S.V., Gudkova, O.Y., Chernikov, V.A., and Bruskov, V.I., Protection of mice against x-ray injuries by the post-radiation administration of guanosine and inosine, Int. J. Radiat. Biol., 2009, vol. 85, no. 2, pp. 116–125.

    Article  CAS  PubMed  Google Scholar 

  52. Ha, C.T., Li, X.H., Fu, D., et al., Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation, Radiat. Res., 2013, vol. 180, no. 3, pp. 316–325. https://doi.org/10.1667/RR3326.1

    Article  CAS  PubMed  Google Scholar 

  53. Hancock, S.L., Chung, R.T., Cox, R.S., and Kallman, R.F., Interleukin 1 beta initially sensitizes and subsequently protects murine intestinal stem cells exposed to photon radiation, Cancer Res., 1991, vol. 51, no. 9, pp. 2280–2285.

    CAS  PubMed  Google Scholar 

  54. Hellstrand, K., Czerkinsky, C., Ricksten, A., et al., Role of serotonin in the regulation of interferon-γ production by human natural killer cells, J. Interferon Res., 1993, vol. 13, pp. 33–38. https://doi.org/10.1089/jir.1993.13.33

    Article  CAS  PubMed  Google Scholar 

  55. Hérodin, F. and Drouet, M., Myeloprotection following cytotoxic damage: the sooner the better, Exp. Hematol., 2008, vol. 36, pp. 769–770.

    Article  PubMed  Google Scholar 

  56. Herr, N., Bode, C., and Duerschmied, D., The effects of serotonin in immune cells, Front. Cardiovasc. Med., 2017, vol. 4, p. 48. https://doi.org/10.3389/fcvm.2017.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofer, M., Pospíšil, M., Komůrková, D., and Hoferová, Z., Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review, Molecules, 2014, vol. 19, pp. 4770–4778. https://doi.org/10.3390/molecules19044770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hong, L., Zhang, G., Sultana, H., et al., The effects of 17-β estradiol on enhancing proliferation of human bone marrow mesenchymal stromal cells in vitro, Stem Cells Dev., 2011, vol. 20, no. 5, pp. 925–931.

    Article  CAS  PubMed  Google Scholar 

  59. Hosoi, Y., Kurishita, A., Ono, T., and Sakamoto, K., Effect of recombinant human granulocyte colony-stimulating factor on survival in lethally irradiated mice, Acta Oncol., 1992, vol. 31, no. 1, pp. 59–63.

    Article  CAS  PubMed  Google Scholar 

  60. Hou, B., Xu, Z.W., Yang, C.W., et al., Protective effects of inosine on mice subjected to lethal total-body ionizing irradiation, J. Radiat. Res., 2007, vol. 48, no. 1, pp. 57–62.

    Article  CAS  PubMed  Google Scholar 

  61. Il’in, L.A., Rudnyi, N.M., Suvorov, N.N., et al., Indralin—radioprotektor ekstrennogo deistviya. Protivoluchevye svoistva, farmakologiya, mekhanizm deistviya, klinika (Indralin as the Emergency Effect Radioprotector: Antiradiation Properties, Pharmacology, Action Mechanism, and Clinical Course), Moscow: Minist. Zravookhr. RF, 1994.

  62. Illing, A., Liu, P., Ostermay, S., et al., Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone, Haematologica, 2012, vol. 97, no. 8, pp. 1131–1135. https://doi.org/10.3324/haematol.2011.052456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Itoh, Y., MT1-MMP: a key regulator of cell migration in tissue, IUBMB Life, 2006, vol. 58, no. 10, pp. 589–596.

    Article  CAS  PubMed  Google Scholar 

  64. Jenkins, V.K., Upton, A.C., and Odell, T.T., Jr., Effect of estradiol on splenic repopulation by endogenous and exogenous haemopoietic cells in irradiated mice, J. Cell Physiol., 1969, vol. 73, pp. 149–157.

    Article  CAS  PubMed  Google Scholar 

  65. Kanazir, D.T., Becarevic, A., Panjevac, B., et al., Effect of highly polymerized nucleic acids and their derivations on the recovery of irradiated rats, Bull. Inst. Nucl. Sci.“Boris Kidrich,” Belgrade, 1959, pp. 145–153.

    Google Scholar 

  66. Katoh, N., Soga, F., Nara, T., et al., Effect of serotonin on the differentiation of human monocytes into dendritic cells, Clin. Exp. Immunol., 2006, vol. 146, pp. 354–361. https://doi.org/10.1111/j.1365-2249.2006.03197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khallouki, F., De Medina, P., Caze-Subra, S., et al., Molecular and biochemical analysis of the estrogenic and proliferative properties of vitamin E compounds, Front Oncol., 2016, vol. 5, p. 287. https://doi.org/10.3389/fonc.2015.00287

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim, J.S., Yang, M., Lee, C.G., et al., In vitro and in vivo protective effects of granulocyte colony-stimulating factor against radiation-induced intestinal injury, Arch. Pharm. Res., 2013, vol. 36, no. 10, pp. 1252–1261. https://doi.org/10.1007/s12272-013-0164-9

    Article  CAS  PubMed  Google Scholar 

  69. Kim, J.S., Jang, W.S., Lee, S., et al., A study of the effect of sequential injection of 5-androstenediol on irradiation-induced myelosuppression in mice, Arch. Pharm. Res., 2015, vol. 38, no. 6, pp. 1213–1222. https://doi.org/10.1007/s12272-014-0483-5

    Article  CAS  PubMed  Google Scholar 

  70. Kim, H.-R., Lee, J.-H., Heo, H.-R., et al., Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway, Cell Biosci., 2016, vol. 6, p. 50. https://doi.org/10.1186/s13578-016-0111-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, S.J., Choe, H., Lee, G.J., et al., Ionizing radiation induces innate immune responses in macrophages by generation of mitochondrial reactive oxygen species, Radiat. Res., 2017, vol. 187, no. 1, pp. 32–41.

    Article  CAS  PubMed  Google Scholar 

  72. Kolesnichenko, I.S., Mikhailov, L.S., Boyarinov, A.S., and Grishin, A.V., Antiradiation schemes of prevention and treatment of search-and-rescue dogs, Veterinariya, 2005, no. 12, pp. 52–54.

  73. Krivokrysenko, V.I., Shakhov, A.N., Singh, V.K., et al., Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure, J. Pharmacol. Exp. Ther., 2012, vol. 343, no. 2, pp. 497–508. https://doi.org/10.1124/jpet.112.196071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Krivokrysenko, V.I., Toshkov, I.A., Gleiberman, A.S., et al., The toll-like receptor 5 agonist entolimod mitigates lethal acute radiation syndrome in non-human primates, PLoS One, 2015, vol. 10, no. 9, p. e0135388. https://doi.org/10.1371/journal.pone.0135388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kudryashov, Yu.B. and Goncharenko, E.N., The role of endogenous substances in creation of the background of increased radioresistance, Radiobiologiya, 1974, vol. 14, no. 2, pp. 210–212.

    Google Scholar 

  76. Kulinskii, V.I., Klimova, A.D., and Filippovich, I.V., Antiradiation effect of nucleosides and action mechanism of adenosine, Radiobiologiya, 1988, vol. 28, no. 2, pp. 230–235.

    CAS  Google Scholar 

  77. Landauer, M.R., Srinivasan, V., and Seed, T.M., Genistein treatment protects mice from ionizing radiation injury, J. Appl. Toxicol., 2003, vol. 23, no. 6, pp. 379–385.

    Article  CAS  PubMed  Google Scholar 

  78. Lawrence, T., The nuclear factor NF-κB pathway in inflammation, Cold Spring Harb. Perspect. Biol., 2009, vol. 1, no. 6, p. a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lebedev, V.G., Moroz, B.B., Vorotnikova, T.V., and Deshevoi, Yu.B., The formation of a radioresistance of hematopoietic system affected by diethylstilbestrol, Radiats. Biol., Radioekol., 1994, vol. 34, nos. 4–5, pp. 565–571.

    CAS  Google Scholar 

  80. Lebedev, V.G., Moroz, B.B., Vorotnikova, T.V., and Deshevoi, Yu.B., The mechanism of the radioprotective effect of indometafen on hematopoietic stem cells in continuous bone marrow culture, Radiats. Biol., Radioekol., 1999, vol. 39, no. 5, pp. 528–533.

    CAS  Google Scholar 

  81. Lebedev, V.G., Moroz, B.B., Deshevoi, Yu.B., and Rozhdestvenskii, L.M., The mechanism of the radioprotective effect of interleukin-1β on continuous bone marrow culture, Radiats. Biol., Radioekol., 2002, vol. 42, no. 1, pp. 60–64.

    CAS  Google Scholar 

  82. Lebedev, V.G., Moroz, B.B., Deshevoi, Yu.B., and Lyrshchikova, A.V., Role of hematopoesis-inducing microenvironment in radioprotective action of interleukin-Lβ on a model of continuous bone marrow cultures, Radiats. Biol., Radioekol., 2004, vol. 44, no. 2, pp. 170–175.

    CAS  Google Scholar 

  83. Legeza, V.I., Abdul’, Yu.A., Antushevich, A.E., et al., The effect of riboxin on the resistance of mice to prolonged non-lethal gamma irradiation, Radiobiologiya, 1993a, vol. 33, no. 5, pp. 658–664.

    CAS  Google Scholar 

  84. Legeza, V.I., Abdul’, Yu.A., Antushevich, A.E., et al., Clinical and experimental study of the radioprotective efficiency of riboxin in fractionated radiation in small doses, Radiobiologiya, 1993b, vol. 33, no. 6, pp. 800–807.

    CAS  Google Scholar 

  85. Legeza, V.I., Chigareva, N.G., Petkevich, N.V., et al., Analysis of the effect of interleukin-1β for treatment of radiation injuries, Gematol. Transfuziol., 1995, vol. 40, no. 3, pp. 10–13.

    CAS  PubMed  Google Scholar 

  86. Legeza, V.I., Chigareva, N.G., Abdul’, Yu.A., and Galeev, I.Sh., Cytokines as a means of early pathogenetic therapy of radiation injuries: efficiency and action mechanism, Radiats. Biol., Radioekol., 2000, vol. 40, no. 4, pp. 420–424.

    CAS  Google Scholar 

  87. Legeza, V.I., Grebenyuk, A.N., and Boyarintsev, V.V., Kombinirovannye radiatsionnye porazheniya i ikh komponenty (Combined Radiation Damages and Their Components), St. Petersburg: Foliant, 2015.

  88. León-Ponte, M., Ahern, G.P., and O’Connell, P.J., Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor, Blood, 2007, vol. 109, pp. 3139–3146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Li, M., Holmes, V., Ni, H., et al., Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during spaceflight, PLoS One, 2015, vol. 10, no. 3, p. e0120126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Linard, C., Marquette, C., Clarençon, D., et al., Acute ileal inflammatory cytokine response induced by irradiation is modulated by subdiaphragmatic vagotomy, J. Neuroimmunol., 2005, vol. 168, nos. 1–2, pp. 83–95.

    Article  CAS  PubMed  Google Scholar 

  91. Luchnik, N.V., Antiradiation preparations and maximums of mortality, Biofizika (Moscow), 1958, vol. 3, no. 3, pp. 332–342.

    CAS  Google Scholar 

  92. Lukashin, B.P. and Sofronov, G.A., Radioprotective effect of cystamine and heparin in mice with different resistance, Bull. Exp. Biol. Med., 1996, vol. 121, no. 5, pp. 492–494.

    Article  Google Scholar 

  93. Lv, J., Wang, L., Gao, Y., et al., 5-Hydroxytryptamine synthesized in the aorta-gonad-mesonephros regulates hematopoietic stem and progenitor cell survival, J. Exp. Med., 2017, vol. 214, pp. 529–545. https://doi.org/10.1084/jem.20150906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maestroni, G.J. and Conti, A., Modulation of hematopoiesis via alpha 1-adrenergic receptors on bone marrow cells, Exp. Hematol., 1994, vol. 22, no. 3, pp. 313–320.

    CAS  PubMed  Google Scholar 

  95. Maisin, J.H., Lambert, G., Mandart, M., and Maisin, H., Therapeutic action of glutathione and beta-mercaptoethylamine against a lethal dose of X-rays, Nature, 1953a, vol. 171, no. 4361, p. 971.

    Article  CAS  PubMed  Google Scholar 

  96. Maisin, J., Mandart, M., Lambert, G., and Maisin, H., Action curative de la β-mercapto-éthylamine chez le rat irradié avec foleprotéqé, Comp. Rend. Sean. Mem. Soc., 1953b, vol. 147, nos. 3–4, pp. 362–364.

    CAS  Google Scholar 

  97. Maisin, J.R., Dumont, P., and Dunjic, A., Yeast ribonucleic acid and its nucleotides as recovery factors in rats receiving on acute whole-body dose of X-rays, Nature, 1960, vol. 186, pp. 487–488.

    Article  CAS  PubMed  Google Scholar 

  98. Maliev V., Popov, D., Jones, J.A., and Casey, R.C., Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation, Adv. Space Res., 2007, vol. 40, no. 4, pp. 586–590.

    Article  CAS  Google Scholar 

  99. Martins, A., Han, J., and Kim, S.O., The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis, IUBMB Life, 2010, vol. 62, no. 8, pp. 611–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mayer, P., Werner, F.J., Lam, C., and Besemer, J., In vitro and in vivo activity of human recombinant granulocyte-macrohpage colony-stimulating factor in dogs, Exp. Hematol., 1990, vol. 18, no. 9, pp. 1026–1033.

    CAS  PubMed  Google Scholar 

  101. Mazurik, V.K., Mikhailov, V.F., Ushenkova, L.N., et al., Indometafen causes biochemical changes in blood cells specific for the radioresistant state of the organism, Radiats. Biol., Radioekol., 1997, vol. 37, no. 2, pp. 165–174.

    CAS  Google Scholar 

  102. Mefferd, R.B., Jr., Henkel, D.T., and Loefer, J.B., Effect of piromen on survival of irradiated mice, Proc. Soc. Exp. Biol. Med., 1953, vol. 83, no. 1, pp. 54–56.

    Article  CAS  PubMed  Google Scholar 

  103. Mo, Y., Li, S.-Y., Liang, E.-Y., et al., The expression of functional dopamine and serotonin receptors on megakaryocytes, Blood, 2014, vol. 124, p. 4205.

    Article  Google Scholar 

  104. Nakada, D., Oguro, H., Levi, B.P., et al., Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy, Nature, 2014, vol. 505, no. 7484, pp. 555–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nefedova, V.V., Inzhevatkin, E.V., and Nefedov, V.P., Role of S2 receptors in the stimulatory effect of serotonin on hemopoietic bone marrow stem cells, Bull. Exp. Biol. Med., 2002, vol. 133, no. 5, pp. 419–420.

    Article  CAS  PubMed  Google Scholar 

  106. Neta, R. and Oppenheim, J.J., Cytokines in therapy of radiation injury, Blood, 1988, vol. 72, no. 3, pp. 1093–1095.

    Article  CAS  PubMed  Google Scholar 

  107. Neta, R., Vogel, S.N., Oppenheim, J.J., and Douches, S.D., Cytokines in radioprotection. Comparison of the radioprotective effects of IL-1 to IL-2, GM-CSF, and IFN gamma, Lymphokine Res., 1986, vol. 5, suppl. 1, pp. 105–110.

    Google Scholar 

  108. Neta, R., Oppenheim, J.J., and Douches, S.D., Interdependence of the radioprotective effects of human recombinant interleukin 1 alpha, tumor necrosis factor alpha, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor, J. Immunol., 1988, vol. 140, no. 1, pp. 108–111.

    CAS  PubMed  Google Scholar 

  109. Neta, R., Stiefel, S.M., and Ali, N., In lethally irradiated mice interleukin-12 protects bone marrow but sensitizes intestinal tract to damage from ionizing radiation, Ann. N.Y. Acad. Sci., 1995, vol. 762, pp. 274–280.

    Article  CAS  PubMed  Google Scholar 

  110. Nothdurft, W., Selig, C., and Fliedner, T.M., Haemotological effect of rhGM–CSF in dogs exposed to total-body irradiation with a dose of 2.4 Gy, Int. J. Rad. Biol., 1992, vol. 61, no. 4, pp. 519–531.

    Article  CAS  PubMed  Google Scholar 

  111. Patt, T.M., Straube, R.L., Tyree, E.B., et al., Influence of estrogens on the acute X-irradiation syndrome, Am. J. Physiol., 1949, vol. 159, no. 2, pp. 269–280.

    Article  CAS  PubMed  Google Scholar 

  112. Ponte, A.L., Ribeiro-Fleury, T., Chabot, V., et al., Granulocyte-colony-stimulating factor stimulation of marrow mesenchymal stromal cells promotes CD34+ cell migration via a matrix metalloproteinase-2-dependent mechanism, Stem Cells Dev., 2012, vol. 21, no. 17, pp. 3162–3172. https://doi.org/10.1089/scd.2012.0048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Popova, N.R., Gudkov, S.V., and Brusov, V.I., Natural purine compounds as radioprotective agents, Radiats. Biol., Radioekol., 2014, vol. 54, no. 1, pp. 38–49.

    CAS  Google Scholar 

  114. Pospišil, M., Hofer, M., Netíková, J., et al., Elevation of extracellular adenosine induces radioprotective effects in mice, Radiat. Res., 1993, vol. 134, no. 3, pp. 323–330.

    Article  PubMed  Google Scholar 

  115. Pulatova, M.K., Sharygin, V.L., and Shlyakova, T.G., The reaction of the synthesis of deoxyribonucleotides to irradiation and their modification by radioprotectors, Radiats. Biol., Radioekol., 2003, vol. 43, no. 1, pp. 29–43.

    CAS  Google Scholar 

  116. Qiu, X., Jin, X., Shao, Z., and Zhao, X., 17β-Estradiol induces the proliferation of hematopoietic stem cells by promoting the osteogenic differentiation of mesenchymal stem cells, Tohoku J. Exp. Med., 2014, vol. 233, no. 2, pp. 141–148.

    Article  CAS  PubMed  Google Scholar 

  117. Redondo-Castro, E., Cunningham, C., Miller, J., et al., Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro, Stem Cell Res. Ther., 2017, vol. 8, no. 1, p. 79. https://doi.org/10.1186/s13287-017-0531-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reimers, J., Wogensen, L.D., Welinder, B., et al., The pharmacokinetics, distribution and degradation of human recombinant interleukin 1 beta in normal rats, Scand. J. Immunol., 1991, vol. 34, no. 5, pp. 597–610.

    Article  CAS  PubMed  Google Scholar 

  119. Rixon, R.H. and Baird, K.M., The therapeutic effect of serotonin on the survival of X-irradiated rats, Radiat. Res., 1968, vol. 33, no. 2, pp. 395–402.

    Article  CAS  PubMed  Google Scholar 

  120. Rogacheva, S.A., Experimental use of cytokines for treatment of acute radiation sickness, Radiats. Biol., Radioekol., 1998, vol. 38, no. 6, pp. 854–873.

    CAS  Google Scholar 

  121. Rogacheva, S.A., Luzanov, V.M., Kirillova, E.N., et al., The effect of recombinant granulocyte-macrophage colony-stimulating factor on the recovery of hematopoiesis and survival of irradiated mice, Radiobiologiya, 1990, vol. 30, no. 6, pp. 769–773.

    CAS  Google Scholar 

  122. Rozhdestvenskii, L.M., Use of cytokines for analysis of pathogenesis and therapy of acute radiation damage, Radiats. Biol., Radioekol., 1997, vol. 37, no. 4, pp. 590–596.

    CAS  Google Scholar 

  123. Rozhdestvenskii, L.M., Deshevoi, Yu.B., Lebedev, V.G., and Nesterova, T.A., The dependence of the therapeutic efficiency of interleukin-1β on the time of introduction of a drug after irradiation of mice, Radiats. Biol., Radioekol., 2002, vol. 42, no. 1, pp. 65–69.

    CAS  Google Scholar 

  124. Rozhdestvenskii, L.M., Korovkina, E.P., and Deshevoi, Yu.B., The use of recombinant human interleukin-1β (betaleukin) for the treatment of acute radiation sickness in dogs, Radiats. Biol., Radioekol., 2008, vol. 48, no. 2, pp. 185–194.

    CAS  Google Scholar 

  125. Rozhdestvenskii, L.M., Shchegoleva, R.A., Deshevoi, Yu.B., et al., Comparative evaluation of the therapeutic effect of different preparations of granulocyte colony-stimulating factor in experiments with irradiated mice, Radiats. Biol., Radioekol., 2012, vol. 52, no. 5, pp. 503–509.

    CAS  Google Scholar 

  126. Rozhdestvenskii, L.M., Shlyakhova, T.G., Shchegoleva, R.A., et al., Evaluation of the therapeutic efficiency of domestic preparations of G-KSF in experiments on irradiated dogs, Radiats. Biol., Radioekol., 2013, vol. 53, no. 1, pp. 47–54.

    CAS  Google Scholar 

  127. Rozhdestvenskii, L.M., Fedotova, M.I., Romanov, A.I., and Belousova, O.I., Implementation and the radiation protection mechanisms of RS-10, mercamine, and mexamine, Radiats. Biol., Radioekol., 2017, vol. 57, no. 5, pp. 540–544.

    Google Scholar 

  128. Satyamitra, M., Uma Devi, P., Murase, H., and Kagiya, V.T., In vivo postirradiation protection by a vitamin E analog, α-TMG, Radiat. Res., 2003, vol. 160, pp. 655–661.

    Article  CAS  PubMed  Google Scholar 

  129. Scanzano, A. and Cosentino, M., Adrenergic regulation of innate immunity: a review, Front. Pharmacol., 2015, vol. 6, p. 171. https://doi.org/10.3389/fphar.2015.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Selidovkin, G.D. and Barabanova, A.V., Treatment of acute radiation sickness from homogenic and heterogenic exposure, in Radiatsionnaya meditsina (Radiation Medicine), Il’in, L.A., Ed., Moscow: IzdAT, 2001, vol. 2, pp. 108–129.

  131. Shakhov, A.N., Singh, V.K., Bone, F., et al., Prevention and mitigation of acute radiation syndrome in mice by synthetic lipopeptide agonists of Toll-like receptor 2 (TLR2), PLoS One, 2012, vol. 7, no. 3, p. e33044. https://doi.org/10.1371/journal.pone.0033044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sharma, D. and Kanneganti, T.D., The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation, J. Cell Biol., 2016, vol. 213, no. 6, pp. 617–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shashkov, V.S., Anashkin, O.D., Suvorov, N.N., and Manaeva, I.A., The efficiency of repeated introduction of serotonin, mexamine, AET, and cystamine after γ-irradiation, Radiobiologiya, 1971, vol. 11, no. 4, pp. 621–623.

    CAS  Google Scholar 

  134. Singh, V.K., Grace, M.B., Jacobsen, K.O., et al., Administration of 5-androstenediol to mice: pharmacokinetics and cytokine gene expression, Exp. Mol. Pathol., 2008, vol. 84, no. 2, pp. 178–188. https://doi.org/10.1016/j.yexmp.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  135. Singh, V.K., Grace, M.B., Parekh, V.I., et al., Effects of genistein administration on cytokine induction in whole-body gamma irradiated mice, Int. Immunopharmacol., 2009, vol. 9, no. 12, pp. 1401–1410. https://doi.org/10.1016/j.intimp.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  136. Singh, V.K., Ducey, E.J., Fatanmi, O.O., et al., CBLB613: a TLR 2/6 agonist, natural lipopeptide of mycoplasma arginini, as a novel radiation countermeasure, Radiat. Res., 2012a, vol. 177, no. 5, pp. 628–642.

    Article  CAS  PubMed  Google Scholar 

  137. Singh, V.K., Fatanmi, O.O., Singh, P.K., and Whitnall, M.H., Role of radiation-induced granulocyte colony-stimulating factor in recovery from whole body gamma-irradiation, Cytokine, 2012b, vol. 58, no. 3, pp. 406–414. https://doi.org/10.1016/j.cyto.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  138. Singh, V.K., Beattie, L.A., and Seed, T.M., Vitamin E: tocopherols and tocotrienols as potential radiation countermeasures, J. Radiat. Res., 2013, vol. 54, no. 6, pp. 973–988. https://doi.org/10.1093/jrr/rrt048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Singh, V.K., Romaine, P.L., Newman, V.L., and Seed, T.M., Tocols induce G-CSF and mobilize progenitors that mitigate radiation injury, Radiat. Prot. Dosimetry, 2014, vol. 162, nos. 1–2, pp. 83–87. https://doi.org/10.1093/rpd/ncu223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Singh, V.K., Kulkarni, S., and Fatanmi, O.O., Radioprotective efficacy of gamma-tocotrienol in nonhuman primates, Radiat. Res., 2016, vol. 185, no. 3, pp. 285–298. https://doi.org/10.1667/RR14127.1

    Article  CAS  PubMed  Google Scholar 

  141. Skurikhin, E.G., Khmelevskaya, E.S., Pershina, O.V., et al., Effect of adrenomimetics and serotonin on polypotent stromal and hemopoietic precursors in Cytostatic myelosuppression,Bull. Exp. Biol. Med., 2010, vol. 150, no. 1, pp. 113–116.

    Article  CAS  PubMed  Google Scholar 

  142. Smirnova, I.B., Dontsova, G.V., Rakhmanina, O.N., and Konstantinova, M.M., The therapeutic effect of adrenaline and serotonin on the hematopoietic system of irradiated mice, Med. Radiol., 1984, vol. 29, no. 12, pp. 43–46.

    CAS  Google Scholar 

  143. Smith, W.W., Alderman, I.M., and Gillespie, R.E., Hematopoietic recovery induced by bacterial endotoxin in irradiated mice, Am. J. Physiol., 1958, vol. 192, pp. 549–556.

    Article  CAS  PubMed  Google Scholar 

  144. Soga, F., Katoh, N., Inoue, T., and Kishimoto, S., Serotonin activates human monocytes and prevents apoptosis, J. Invest. Dermatol., 2007, vol. 127, pp. 1947–1955. https://doi.org/10.1038/sj.jid.5700824

    Article  CAS  PubMed  Google Scholar 

  145. Son, T.G., Gong, E.J., Bae, M.J., et al., Protective effect of genistein on radiation-induced intestinal injury in tumor bearing mice, BMC Compl. Alt. Med., 2013, vol. 13, p. 103. https://doi.org/10.1186/1472-6882-13-103

    Article  CAS  Google Scholar 

  146. Stickney, D.R., Dowding, C., Garsd, A., et al., 5-Androstenediol stimulates multilineage hematopoiesis in rhesus monkeys with radiation-induced myelosuppression, Int. Immunopharmacol., 2006, vol. 6, no. 11, pp. 1706–1713.

    Article  CAS  PubMed  Google Scholar 

  147. Stickney, D.R., Dowding, C., Authier, S., et al., 5-Androstenediol improves survival in clinically unsupported rhesus monkeys with radiation-induced myelosuppression, Int. Immunopharmacol., 2007, vol. 7, no. 4, pp. 500–505.

    Article  CAS  PubMed  Google Scholar 

  148. Stoecklein, V.M., Osuka, A., Ishikawa, S., et al., Radiation exposure induces inflammasome pathway activation in immune cells, J. Immunol., 2015, vol. 194, no. 3, pp. 1178–1189. https://doi.org/10.4049/jimmunol.1303051

    Article  CAS  PubMed  Google Scholar 

  149. Stone, H.B., Moulder, J.E., Coleman, C.N., et al., Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries, Radiat. Res., 2004, vol. 162, pp. 711–728.

    Article  CAS  PubMed  Google Scholar 

  150. Suslikov, V.N., The protective effect of diethylstilbestrol, Radiobiologiya, 1963, vol. 3, no. 6, pp. 880–890.

    CAS  Google Scholar 

  151. Svyatukhin, M.V., Shilov, V.M., and Bondarev, A.A., The effect of crude dextran and of the pyrogenic polysaccharide of B. Proteus vulgaris on the survival of white mice after total irradiation, Bull. Exp. Biol. Med., 1959, vol. 47, no. 5, pp. 598–601.

    Article  Google Scholar 

  152. Talmadge, J.E., Tribble, H., Pennington, R., et al., Protective, restorative, and therapeutic properties of recombinant colony-stimulating factors, Blood, 1989, vol. 73, no. 8, pp. 2093–2103.

    Article  CAS  PubMed  Google Scholar 

  153. Tanikawa, S., Kakao, J., Tsumoka, K., and Nara, N., Effect of recombinant granulocyte colony-stimulating factor (rG-CSF) and recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) on acute radiation hematopoietic injury in mice, Exp. Hematol., 1989, vol. 17, pp. 883–888.

    CAS  PubMed  Google Scholar 

  154. Thompson, J.S., Simmons, E.L., Crawford, M. K., and Severson, C.D., Studies on the mechanisms of estradiol-induced radioprotection, Radiat. Res., 1969, vol. 40, pp. 70–84.

    Article  CAS  PubMed  Google Scholar 

  155. Tikhomirova, M.V., Yashkin, P.N., Fedorenko, B.S., and Chertkov, K.S., Radioprotective efficiency of ATP and adenosine on high-energy protons, Kosm. Biol. Aviakosm. Med., 1984, vol. 18, no. 5, pp. 75–77.

    CAS  PubMed  Google Scholar 

  156. Torosyan, M.V., Shishkova, O.V., and Aizenberg, O.A., Effect of riboxin on prophage induction and survival of bacterial culture under gamma irradiation, Radiobiologiya, 1990, vol. 30, no. 3, pp. 390–394.

    Google Scholar 

  157. Treadwell, A., Gardner, W.U., and Lawrence, J.H., Effect of combining estrogen with lethal doses of roentgen-ray in Swiss mice, Endocrinology, 1943, vol. 32, no. 2, pp. 161–164.

    Article  CAS  Google Scholar 

  158. Ul’yanova, L.P., Ketlinskii, S.A., and Budagov, R.S., The efficiency of interleukin-1β in the treatment of combined radiation-thermal lesions, Radiats. Biol., Radioekol., 1997, vol. 37, no. 2, pp. 175–181.

    Google Scholar 

  159. Vartanyan, L.P., Krutovskikh, G.I., Pustovalov, Yu.I., and Gornaeva, G.F., Antiradiation effect of riboxin (inosine), Radiobiologiya, 1989, vol. 29, no. 5, pp. 707–709.

    CAS  Google Scholar 

  160. Vasin, M.V., Protivoluchevye lekarstvennye sredstva (Antiradiation Medical Drugs), Moscow: Ross. Med. Akad. Poslediplomnogo Obraz., 2010.

  161. Vasin, M.V., Classification of antiradiation preparations as a reflection of modern state and development of radiation pharmacology, Radiats. Biol., Radioekol., 2013, vol. 53, no. 5, pp. 459–467.

    CAS  Google Scholar 

  162. Vasin, M.V., Ushakov, I.B., Kovtun, V.Yu., et al., Radioprotective properties of the emergency effect of indralin applied after irradiation with partial shielding of the abdomen of rats, Radiats. Biol., Radioekol., 2008a, vol. 48, no. 2, pp. 199–201.

    CAS  Google Scholar 

  163. Vasin, M.V., Ushakov, I.B., Kovtun, V.Yu., et al., Characterization of the antiradiation properties of the B-190 radioprotector applied after irradiation, Radiats. Biol., Radioekol., 2008b, vol. 48, no. 6, pp. 730–733.

    CAS  Google Scholar 

  164. Vasin, M.V., Ushakov, I.B., Kovtun, V.Yu., et al., The effect of the combined use of quercetin and indralin on post-radiation recovery of the hematopoiesis system in acute radiation sickness, Radiats. Biol., Radioekol., 2011, vol. 51, no. 2, pp. 247–251.

    CAS  Google Scholar 

  165. Vasin, M.V., Ushakov, I.B., Kovtun, V.Yu., et al., Pharmacological analysis of the therapeutic effect of radioprotectors cystamine and indralin in the capacity of radiomitigators, Bull. Exp. Biol. Med., 2017, vol. 162, no. 4, pp. 466–469.

    Article  CAS  PubMed  Google Scholar 

  166. Venereau, E., Ceriotti, C., and Bianchi, M.E., DAMPs from cell death to new life, Front. Immunol., 2015, vol. 6, p. 422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Vijay-Kumar, M., Aitken, J.D., Sanders, C.J., et al., Flagellin treatment protects against chemicals, bacteria, viruses, and radiation, J. Immunol., 2008, vol. 180, no. 12, pp. 8280–8285.

    Article  CAS  PubMed  Google Scholar 

  168. Virág, L., Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies, Curr. Vasc. Pharmacol., 2005, vol. 3, no. 3, pp. 209–214.

    Article  PubMed  Google Scholar 

  169. Virág, L. and Szabó, C., Purines inhibit poly(ADP-ribose)polymerase activation and modulate oxidant induced cell death, FASEB J., 2001, vol. 15, pp. 99–107.

    Article  PubMed  Google Scholar 

  170. Virág, L., Robaszkiewicz, A., Rodriguez-Vargas, J.M., and Oliver, F.J., Poly(ADP-ribose) signaling in cell death, Mol. Aspects Med., 2013, vol. 34, no. 6, pp. 1153–1167. https://doi.org/10.1016/j.mam.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  171. Vorotnikova, T.V., The mechanism of radioprotective action of indometafen and diethylstilbestrol on the blood system, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow: Inst. Biophys., Minist. Health RF, 1995.

  172. Wang, X., Cheng, Q., Li, L., et al., Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34+ cells, Exp. Cell Res., 2012, vol. 318, no. 3, pp. 196–206. https://doi.org/10.1016/j.yexcr.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  173. Weissberg, J.B. and Fischer, J.J., Effect of purine nucleosides and nucleotides on the in vivo radiation response of normal tissue in the rat, Int. J. Radiat. Oncol. Biol. Phys., 1981, vol. 7, no. 3, pp. 365–369.

    Article  CAS  PubMed  Google Scholar 

  174. Welihinda, A.A., Kaur, M., Raveendran, K.S., and Amento, E.P., Enhancement of inosine-mediated A2AR signaling through positive allosteric modulation, Cell Signaling, 2018, vol. 42, pp. 227–235. https://doi.org/10.1016/j.cellsig.2017.11.002

    Article  CAS  Google Scholar 

  175. Whitnall, M.H., Elliott, T.B., Landauer, M.R., et al., Protection against gamma-irradiation with 5-androstenediol, Mil. Med., 2002, vol. 167, no. 2, pp. 64–65.

    Article  PubMed  Google Scholar 

  176. Xiao, M., The role of proinflammatory cytokine interleukin-18 in radiation injury, Health Phys., 2016, vol. 111, no. 2, pp. 212–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xiao, M., Inal, C.E., Parekh, V.I., et al., 5-Androstenediol promotes survival of gamma-irradiated human hematopoietic progenitors through induction of nuclear factor-κB activation and granulocyte colony-stimulating factor expression, Mol. Pharmacol., 2007, vol. 7, no. 2, pp. 370–379.

    Article  CAS  Google Scholar 

  178. Yang, M., Srikiatkhachorn, A., Anthony, M., and Chong, B.H., Serotonin stimulates megakaryocytopoiesis via the 5‑HT2 receptor, Blood Coagulation Fibrinolysis, 1996, vol. 7, pp. 127–133. https://doi.org/10.1097/00001721-199603000-00004

    Article  CAS  PubMed  Google Scholar 

  179. Yang, M., Li, K., Ng, P. C., et al., Promoting effects of serotonin on hematopoiesis: ex vivo expansion of cord blood CD34+ stem/progenitor cells, proliferation of bone marrow stromal cells and antiapoptosis, Stem Cells, 2007, vol. 25, no. 7, pp. 1800–1806. https://doi.org/10.1634/stemcells.2007-0048

    Article  CAS  PubMed  Google Scholar 

  180. Ye, J.Y., Liang, E.Y., Cheng, Y.S., et al., Serotonin enhances mega-karyopoiesis and proplatelet formation via p‑Erk1/2 and F-actin reorganization, Stem Cells, 2014, vol. 32, pp. 2973–2982. https://doi.org/10.1002/stem.1777

    Article  CAS  PubMed  Google Scholar 

  181. Zargarova, N.I., Grebenyuk, A.N., Legeza, V.I., and Vladimirova, O.O., The phenomenon of reciprocal burdening in combined radiation damages, Vestn. Ross. Voen.-Med. Akad., 2013, vol. 42, no. 2, pp. 91–95.

    Google Scholar 

  182. Zhou, Y. and Mi, M.-T., Genistein stimulates hematopoiesis and increases survival in irradiated mice, J. Radiat. Res., 2005, vol. 46, pp. 425–433.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vasin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasin, M.V., Ushakov, I.B. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. Biol Bull Rev 9, 503–519 (2019). https://doi.org/10.1134/S2079086419060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419060082

Keywords:

Navigation