Skip to main content
Log in

Allelopathic Interactions between Plants and Microorganisms in Soil Ecosystems

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Allelopathy is a kind of ecological competition between organisms that is widely spread in nature and exerts a significant effect on the functioning of biocenoses. In recent decades, significant results have been obtained on the isolation and identification of metabolites of plants and microorganisms with allelopathic activity and their role in soil ecosystems. The present review analyses data on allelopathic properties of plants and microorganisms, the main functions and modes of action of allelochemicals, and their stability in soil ecosystems. The role of allelopathic interactions in biocenoses and specific features of allelopathic activity under a changing environment and anthropogenic impact are discussed. The possibility of the use of allelopathy for the control of phytopathogens and future research directions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anaya, A.L., Saucedo-García, A., Contreras-Ramos, S.M., and Cruz-Ortega, R., Plant-mycorrhizae and endophytic fungi interactions: broad spectrum of allelopathy studies, in Allelopathy: Current Trends and Future Applications, Cheema, Z.A., Farooq, M., and Wahid, A., Eds., New York: Springer-Verlag, 2013, pp. 55–80.

    Google Scholar 

  2. Arunachalam, M., Mohan, N., Sugadev, R., et al., Degradation of (+)-catechin by Acinetobacter calcoaceticus MTC 127, Biochim. Biophys. Acta, Gen. Subj., 2003, vol. 1621, pp. 261–265.

    Article  CAS  Google Scholar 

  3. Aslam, F., Khaliq, A., Matloob, A., et al., Allelopathy in agro-ecosystems: a critical review of wheat allelopathy – concepts and implications, Chemoecology, 2017, vol. 27, pp. 1–24.

    Article  CAS  Google Scholar 

  4. Bais, H.P., Vepachedu, R., Gilroy, S., et al., Allelopathy and exotic plant invasion: from molecules and genes to species interactions, Science, 2003, vol. 301, pp. 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  5. Baldwin, I.T., Mechanism of damage-induced alkaloid production in wild tobacco, J. Chem. Ecol., 1989, vol. 15, pp. 1661–1680.

    Article  CAS  PubMed  Google Scholar 

  6. Bakker, A.W. and Schippers, B., Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.—mediated plant growth-stimulation, Soil Biol. Biochem., 1987, vol. 19, pp. 451–457.

    Article  CAS  Google Scholar 

  7. Barazani, O. and Friedman, J., Allelopathic bacteria and their impact on higher plants, Crit. Rev. Microbiol., 2001, vol. 27, pp. 41–55.

    Article  CAS  PubMed  Google Scholar 

  8. Bardin, M., Ajouz, S., Comby, M., et al., Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci., 2015, vol. 6, p. 566. https://doi.org/10.3389/fpls.2015.00566

    Article  PubMed  PubMed Central  Google Scholar 

  9. Batish, D.R., Singh, H.P., Setia, N., et al., 2-Benzoxazolinone (BOA) induced oxidative stress, lipid per-oxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus), Plant Physiol. Biochem., 2006, vol. 44, pp. 819–827.

    Article  CAS  PubMed  Google Scholar 

  10. Battilani, P., Stroka, J., and Magan, N., Foreword: mycotoxins in a changing world, World Mycotoxin J., 2016, vol. 9, pp. 647–651.

    Article  Google Scholar 

  11. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P., Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents, Gen. Mol. Biol., 2012, vol. 35, no. 4, pp. 1044–1051.

    Article  CAS  Google Scholar 

  12. Berestetskii, O.A., Phytotoxins of soil microorganisms and their ecological role, in Fitotoskicheskie svoistva pochvennykh mikroorganizmov (Phytotoxic Properties of Soil Microorganisms), Leningrad: Vses. Nauchno-Issled. Inst. S-kh. Mikrobiol., 1978, pp. 7–31.

  13. Berestetskiy, A.O., A review of fungal phytotoxins: from basic studies to practical use, Appl. Biochem. Microbiol., 2008, vol. 44, no. 5, pp. 453–465.

    Article  CAS  Google Scholar 

  14. Bilai, V.I., Osnovy obshchei mikologii (Fundamentals of General Mycology), Kiev: Vishcha Shkola, 1989.

  15. Blair, A.C., Nissen, S.J., Brunk, G.R., and Hufbauer, R.A., A lack of evidence for an ecological role of the putative allelochemical (+/–)-catechin in spotted knapweed invasion success, J. Chem. Ecol., 2006, vol. 32, pp. 2327–2331.

    Article  CAS  PubMed  Google Scholar 

  16. Blanco, J.A., The representation of allelopathy in ecosystem-level forest models, Ecol. Model., 2007, vol. 209, pp. 65–77.

    Article  Google Scholar 

  17. Boronin, A.M., Rhizosphere bacteria of genus Pseudomonas enhancing growth and development of the plants, Sorosovskii Obraz. Zh., 1998, no. 10, pp. 25–31.

  18. Chase, W.R., Nair, M.G., Putnam, A.R., and Mishra, S.K., 2,2'-oxo-1,1'-azobenzene: microbial transformation of rye (Secale cereale L.) allelochemicals in field soils by Acinetobacter calcoaceticus: III, J. Chem. Ecol., 1991, vol. 17, pp. 1575–1584.

    Article  CAS  PubMed  Google Scholar 

  19. Chatterton, S. and Punja, Z.K., Chitinase and β-1,3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens, Can. J. Microbiol., 2009, vol. 55, no. 4, pp. 356–367.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, F. and Cheng, Z., Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy, Front. Plant Sci., 2015, vol. 6, p. 1020.

    PubMed  PubMed Central  Google Scholar 

  21. Chernin, L. and Chet, I., Microbial enzymes in biocontrol of plant pathogens and pests, in Enzymes in the Environment: Activity, Ecology, and Applications, Burns, R. and Dick, R., Eds., Boca Raton: CRC Press, 2002, pp. 171–225.

    Google Scholar 

  22. Cipollini, D., Rigsby, C.M., and Barto, E.K., Microbes as targets and mediators of allelopathy in plants, J. Chem. Ecol., 2012, vol. 38, pp. 714–727.

    Article  CAS  PubMed  Google Scholar 

  23. Daguerre, Y., Siegel, K., Edel-Hermann, V., and Steinberg, C., Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review, Fungal Biol. Rev., 2014, vol. 28, pp. 97–125.

    Article  Google Scholar 

  24. Dilantha, W.G., Nakkeeran, S., and Zhang, Y., Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases, in PGPR: Biocontrol and Biofertilization, Siddiqui, Z.A., Ed., Dordrecht: Springer-Verlag, 2005, pp. 67–109.

    Google Scholar 

  25. Dobbelaere, S., Vanderleyden, J., and Okon, Y., Plant growth promoting effects of diazotrophs in the rhizosphere, CRC Crit. Rev. Plant Sci., 2003, vol. 22, pp. 107–149.

    Article  CAS  Google Scholar 

  26. Duke, S.O. and Dayan, F.E., Modes of action of microbially-produced phytotoxins, Toxins, 2011, vol. 3, no. 8, pp. 1038–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Fundamental Theory about Antibiotics), Moscow: Nauka, 2004.

  28. Ehlers, B.K., Soil microorganisms alleviate the allelochemical affects of a thyme monoterpene on the performance of an associated grass species, PLoS One, 2011, vol. 6, p. e26321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ehlers, B.K. and Thompson, J., Do co-occurring plant species adapt to one another? The response of Bromus erectus to the presence of different Thymus vulgaris chemotypes, Oecologia, 2004, vol. 141, pp. 511–518.

    Article  PubMed  Google Scholar 

  30. Einhellig, F.A., Allelopathy: current status and future goals, in Allelopathy: Organisms, Processes, and Applications, Inderjit, Dakshini, K.M.M., and Einhellig, F.A., Eds., Washington, DC: Am. Chem. Soc., 1995, pp. 1–24.

    Google Scholar 

  31. Einhellig, F.A., Mode of allelochemical action of phenolic compounds, in Allelopathy, Chemistry and Mode of Action of Allelochemicals, Macıas, F.A., Galindo, J.C.G., Molinillo, J.M.G., and Gutter, H.G., Eds., Boca Raton: CRC Press, 2004.

    Google Scholar 

  32. Elijarrat, E. and Barcelo, D., Sample handling and analysis of allelochemical compounds in plants, Trends Anal. Chem., 2001, vol. 20, pp. 584–590.

    Article  Google Scholar 

  33. Flores, A., Chet, I., and Herrera-Estrella, A., Improved biocontrol activity of Trichoderma harzianum strains by over-expression of the proteinase encoding gene prb1,Curr. Genet., 1997, vol. 31, pp. 30–37.

    Article  CAS  PubMed  Google Scholar 

  34. Friedman, J., Hutchins, A., Li, C.Y., and Perry, D.A., Actinomycetes inducing phytotoxic or fungistatic activity in Douglas-fir forest and in an adjacent area of repeated regeneration failure in Southwestern Oregon, Biol. Plant., 1989, vol. 31, no. 6, pp. 487–495.

    Article  Google Scholar 

  35. Gand, E., Hanson, J.R., and Nasir, H., The biotransformation of 8-epicedrol and some relatives by Cephalosporium aphicola,Phytochemistry, 1995, vol. 39, pp. 1081–1084.

    Article  CAS  Google Scholar 

  36. Gerbore, J., Benhamou, N., Vallance, J., et al., Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum,Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 4847–4860.

    Article  CAS  Google Scholar 

  37. Glick, B.R., Cheng, Z., Czarny, J., and Duan, J., Promotion of plant growth by ACC deaminase-producingsoil bacteria, Eur. J. Plant Pathol., 2007, vol. 119, pp. 329–339.

    Article  CAS  Google Scholar 

  38. Gray, E.J. and Smith, D.L., Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes, Soil Biol. Biochem., 2005, vol. 37, pp. 395–412.

    Article  CAS  Google Scholar 

  39. Grodzinskii, A.M., Allelopatiya v zhizni rastenii i ikh soobshchestv (Allelopathy in the Life of Plants and Their Communities), Kiev: Naukova Dumka, 1965.

  40. Grodzinskii, A.M., Allelopatiya rastenii i pochvoutomlenie: izbrannye trudy (Allelopathy of the Plants and Soil Fatigue: Selected Research Works), Kiev: Naukova Dumka, 1991.

  41. Haas, D. and Keel, C., Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease, Annu. Rev. Phytopathol., 2003, vol. 41, pp. 117–153.

    Article  CAS  PubMed  Google Scholar 

  42. Hanson, J.R. and Nasir, H., Biotransformation of sesquiterpenoid, cedrol, by Cephalosporium aphidicola,Phytochemistry, 1993, vol. 33, pp. 835–837.

    Article  CAS  Google Scholar 

  43. Hashidoko, Y., Urashima, M., Yoshida, T., and Mizutani, J., Decarboxylative conversion of hydrocinnamic acids by Klebsiella oxytoca and Erwinia uredovora, epiphytic bacteria of Polymnia sonchifolia leaf, possibly associated with formation of microflora on the damaged leaves, Biosci. Biotechnol. Biochem., 1993, vol. 57, pp. 215–219.

    Article  CAS  PubMed  Google Scholar 

  44. Heisey, R.M. and Putnam, A.R., Herbicidal effects of geldanamycin and nigericin, antibiotics from Streptomyces hygroscopicus,J. Nat. Prod., 1986, vol. 49, pp. 859–865.

    Article  CAS  PubMed  Google Scholar 

  45. Hierro, J.L. and Callaway, R.M., Allelopathy and exotic plant invasion, Plant Soil, 2003, vol. 256, pp. 29–39.

    Article  CAS  Google Scholar 

  46. Inderjit, Plant phenolics in allelopathy, Bot. Rev., 1996, vol. 62, no. 2, pp. 186–202.

    Article  Google Scholar 

  47. Inderjit, Multifaceted approach to study allelochemicals in an ecosystem, in Allelopathy: From Molecules to Ecosystems, Reigosa, M.J. and Pedrol, N., Eds., Enfield, NH: Science, 2002, pp. 271–276.

    Google Scholar 

  48. Inderjit, Soil microorganisms: an important determinant of allelopathic activity, Plant Soil, 2005, vol. 274, pp. 227–236.

    Article  CAS  Google Scholar 

  49. Inderjit and Dakshini, K.M.M., Allelopathic effect of Pluchea lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth, Am. J. Bot., 1994, vol. 81, pp. 799–804.

    Article  Google Scholar 

  50. Inderjit and Mukerji, K.G., Allelochemicals: Biological Control of Plant Pathogens and Diseases, New York: Springer-Verlag, 2006.

  51. Inderjit, Pollock, J.L., Callaway, R.M., and Holben, W., Phytotoxic effects of (6)-catechin in vitro, in soil, and in the field, PLoS One, 2008, vol. 3, p. e2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Inderjit, Wardle, D.A., Karban, R., and Callaway, R.M., The ecosystem and evolutionary contexts of allelopathy, Trends Ecol. Evol., 2011, vol. 26, pp. 655–662.

    Article  CAS  PubMed  Google Scholar 

  53. Isaac, B.G., Ayer, S.W., Letendre, L.J., and Stonard, R.J., Herbicidal nucleosides from microbial sources, J. Antibiot., 1991, vol. 44, pp. 729–732.

    Article  CAS  Google Scholar 

  54. Javaid, A. and Shoaib, A., Allelopathy for the management of phytopathogens, in Allelopathy: Current Trends and Future Applications, Cheema, Z.A., Farooq, M., and Wahid, A., Eds., Berlin: Springer-Verlag, 2013, pp. 299–319.

    Google Scholar 

  55. Jilani, G., Mahmood, S., Chaudhry, A.N., et al., Allelochemicals: sources, toxicity and microbial transformation in soil—a review, Ann. Microbiol., 2008, vol. 58, pp. 351–357.

    Article  CAS  Google Scholar 

  56. Jose, S., Williams, R., and Zamora, D., Belowground ecological interactions in mixed-species forest plantations, For. Ecol. Manage., 2006, vol. 233, pp. 231–239.

    Article  Google Scholar 

  57. Kalemba, D. and Kunicka, A., Antibacterial and antifungal properties of essential oils, Curr. Med. Chem., 2003, vol. 10, no. 10, pp. 813–829.

    Article  CAS  PubMed  Google Scholar 

  58. Kamensky, M., Ovadis, M., Chet, I., and Chernin, L., Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Scelrotinia sclerotiorum diseases, Soil Biol. Biochem., 2003, vol. 35, pp. 323–331.

    Article  CAS  Google Scholar 

  59. Kimmins, J.P., Forest Ecology: A Foundation for Sustainable Forest Management and Environmental Ethics in Forestry, New Jersey: Prentice Hall, 2004.

    Google Scholar 

  60. Koeppe, D.E., Rohrbaugh, L.M., Rice, E.L., and Wender, S.H., The effect of age and chilling temperatures on the concentration of scopolin and caffeovlouinic acids in tobacco, Physiol. Plant., 1970, vol. 23, pp. 258–266.

    Article  CAS  Google Scholar 

  61. Koeppe, D.E., Southwick, L.M., and Bittell, J.E., The relationship of tissue chlorogenic acid concentration and leaching of phenolics from sunflowers grown under varying phosphate nutrient conditions, Can. J. Bot., 1976, vol. 54, pp. 593–599.

    Article  CAS  Google Scholar 

  62. Kolombet, L.V., Fungi of genus Trichoderma as the producers of biological preparations for plant production, in Uspekhi meditsinskoi mikologii (Advances of Medical Mycology), D’yakov, Yu.T. and Sergeev, Yu.V., Eds., Moscow: Nats. Akad. Mikol., 2007, vol. 1, pp. 323–371.

  63. Kondrat’ev, M., Karpova, G., and Larikova, Yu., Vzaimosvyazi i vzaimootnosheniya v rastitel’nykh soobshchestvakh (Relationships in the Plant Communities), Moscow: Ross. Gos. Agrar. Univ.–Mosk. S-kh. Akad., 2014.

  64. Lankau, R., Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species, Biol. Invasions, 2010, vol. 12, pp. 2059–2068.

    Article  Google Scholar 

  65. Latif, S., Chiapusio, G., and Weston, L.A., Allelopathy and the role of allelochemicals in plant defense, Adv. Bot. Res., 2017, vol. 82, pp. 19–54.

    Article  Google Scholar 

  66. Li, X., Wang, J., Huang, D., et al., Allelopathic potential of Artemisia frigida and successional changes of plant communities in the northern China steppe, Plant Soil, 2011, vol. 341, pp. 383–398.

    Article  CAS  Google Scholar 

  67. Liu, S., Qin, F., and Yu, S., Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals, Appl. Soil Ecol., 2018, vol. 127, pp. 1–7.

    Article  Google Scholar 

  68. Maksimov, I.V., Abizgil’dina, R.R., and Pusenkova, L.I., Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review), Appl. Biochem. Microbiol., 2011, vol. 47, no. 4, pp. 333–345.

    Article  CAS  Google Scholar 

  69. Maksimov, I.V., Maksimova, T.I., Sarvarova, E.R., and Blagova, D.K., Endophytic bacteria as effective agents of new-generation biopesticides (review), Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 128–140.

    Article  CAS  Google Scholar 

  70. Mallik, A.U., Conifer regeneration problems in boreal and temperate forest with ericaceous understory: role of disturbance, seedbed limitation, and keystone change, Crit. Rev. Plant Sci., 2003, vol. 22, pp. 341–366.

    Article  Google Scholar 

  71. Macías, F.A., Oliveros-Bastidas, A., Marín, D., et al., Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models, Phytochem. Rev., 2008, vol. 7, pp. 179–194.

    Article  CAS  Google Scholar 

  72. McCormick, S.P., Microbial detoxification of mycotoxins, J. Chem. Ecol., 2013, vol. 39, pp. 907–918.

    Article  CAS  PubMed  Google Scholar 

  73. Melkiana, N.P., Allelopathy in forest in forest and agroecosystems in the Himalayan region, in Allelopathy: Basic and Applied Aspects, Rizvi, S.J.H. and Rizvi, V., Eds., London: Chapman and Hall, 1992, pp. 371–388.

    Google Scholar 

  74. Miller-Wideman, M., Makkar, N., Tran, M., et al., Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A 7847, J. Antibiot., 1992, vol. 45, pp. 914–921.

    Article  CAS  Google Scholar 

  75. Minamisawa, K. and Fukai, K., Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production, Plant Cell Physiol., 1991, vol. 32, pp. 1–9.

    CAS  Google Scholar 

  76. Mirchink, T.G., Pochvennaya mikologiya (Soil Mycology), Moscow: Mosk. Gos. Univ., 1988.

  77. Mosina, L.V. and Merzlaya, G.E., Ecological assessment of the influence of organic and mineral fertilizers on the microflora of soddy-podzolic soil and the productivity of agrocenoses in extreme weather conditions, Izv. Timiryazevsk. S-kh. Akad., 2013, no. 5, pp. 5–18.

  78. Müller, N., Hempel, M., Philipp, B., and Gross, E.M., Degradation of gallic acid and hydrolysable polyphenols is constitutively activated in the freshwater plant-associated bacterium Matsuebacter sp. FB25, Aquat. Microb. Ecol., 2007, vol. 47, no. 1, pp. 83–90.

    Article  Google Scholar 

  79. Nakajima, M., Itoi, K., Takamatsu, Y., Kinoshita, T., et al., Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus,J. Antibiot., 1991, vol. 44, pp. 293–300.

    Article  CAS  Google Scholar 

  80. Naumov, G.F., Allelopathic properties of secrets of germinating seeds of crop cultures and their agricultural plants, in Allelopatiya i produktivnost’ rastenii (Allelopathy and Plant Productivity), Kharkov: Khar’k. S-kh. Inst. im. V.V. Dokuchaeva, 1988, pp. 5–12.

  81. Nazarov, V.V. and Shirokov, A.I., Allelopathic effect of some orchids in vitro, Uch. Zap. Tavrich. Nats. Univ.im.V.I. Vernadskogo, 2014, vol. 27, no. 5, pp. 102–109.

    Google Scholar 

  82. Nishimura, H., Hiramoto, S., Mizutani, J., et al., Structure and biological activity of bottrospicatol, a novel monoterpene produced by microbial transformation of (–)-cis-carveol, Agric. Biol. Chem., 1983, vol. 47, pp. 2697–2699.

    CAS  Google Scholar 

  83. Patni, B., Chandra, H., Mishra, A.P., et al., Rice allelopathy in weed management—an integrated approach, Cell Mol. Biol., 2018, vol. 64, no. 8, pp. 84–93.

    Article  PubMed  Google Scholar 

  84. Pellissier, F. and Souto, X.C., Allelopathy in northern temperate and boreal semi-natural woodland, Crit. Rev. Plant Sci., 1999, vol. 18, pp. 637–652.

    Article  Google Scholar 

  85. Perry, L., Thelen, G., Ridenour, W., et al., Concentrations of the allelochemical (+/–)-catechin in Centaurea maculosa soils, J. Chem. Ecol., 2007, vol. 33, pp. 2337–2344.

    Article  CAS  PubMed  Google Scholar 

  86. Podile, A.R. and Kishore, G.K., Plant growth-promoting rhizobacteria, in Plant-Associated Bacteria, Gnanamanickam, S.S., Ed., New York: Springer-Verlag, 2006, pp. 195–230.

    Google Scholar 

  87. Polyak, Yu.M., Bakina, L.G., Mayachkina, N.V., and Galdiyants, A.A., Role of allolopathic interactions in the structural and functional changes of anthropogenically disturbed soils, Gumus Pochvoobraz., 2017, no. 21, pp. 65–69.

  88. Postolaky, O., Syrbu, T., Poiras, N., et al., Streptomycetes and micromycetes as perspective antagonists of fungal phytopathogens, Commun. Agric. Appl. Biol. Sci., 2012, vol. 77, no. 3, pp. 249–257.

    CAS  PubMed  Google Scholar 

  89. Putnam, A.R. and Tang, C.S., Allelopathy: state of the science, in The Science of Allelopathy New York: Wiley, 1986, pp. 1–19.

    Google Scholar 

  90. Quinn, J.C., Kessell, A., and Weston, L.A., Secondary plant products causing photosensitization in grazing herbivores: their structure, activity and regulation, Int. J. Mol. Sci., 2014, vol. 15, no. 1, pp. 1441–1465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Reid, T.C., Hausbeck, M.K., and Kizilkaya, K., Use of fungicides and biological controls in the suppression of Fusarium crown and root rot of asparagus under greenhouse and growth chamber conditions, Plant Dis., 2002, vol. 86, pp. 493–498.

    Article  CAS  PubMed  Google Scholar 

  92. Reigosa, M.J., Sanchez-Moreiras, A.M., and Gonzalez, L., Ecophysiological approach in allelopathy, Crit. Rev. Plant Sci., 1999, vol. 18, pp. 577–608.

    Article  CAS  Google Scholar 

  93. Reigosa, M.J., Pedrol, N., Sanchez-Moreiras, A.M., and Gonzalez, L., Stress and allelopathy, in Allelopathy: From Molecules to Ecosystems, Reigosa, M.J. and Pedrol, N., Eds., Enfield, NH: Science, 2002, pp. 231–256.

    Google Scholar 

  94. Rivoal, A., Fernandez, C., Greff, S., et al., Does competition stress decrease allelopathic potential? Biochem. Syst. Ecol., 2011, vol. 39, pp. 401–407.

    Article  CAS  Google Scholar 

  95. Scacchi, A., Bortolo, R., Cassani, G., et al., Detection, characterization and phytotoxic activity of the nucleoside antibiotics, blasticidin S and 5-hydroxylmethyl-blasticidin S, J. Plant Growth Regul., 1992, vol. 11, pp. 39–46.

    Article  CAS  Google Scholar 

  96. Schirmbock, M., Lorito, M., Wang, Y.L., et al., Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi, Appl. Environ. Microbiol., 1994, vol. 60, no. 12, pp. 4364–4370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schwartz, D., Berger, S., Heinzelmann, E., et al., Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tu494, Appl. Environ. Microbiol., 2004, vol. 70, no. 12, pp. 7093–7102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shioimi, K., Ara, N., Shinos, M., et al., New antibiotics phthoxazolins B, C, and D produced by Streptomyces sp. KO-7888, J. Antibiot., 1995, vol. 48, pp. 714–719.

    Article  Google Scholar 

  99. Simagina, N.O. and Lysyakova, N.Yu., Effect of allelopathic interactions on lignifications of anatomic structures of therophyte halophytes, Ekosist., Optimizatsiya Okhrana, 2010, no. 2, pp. 75–83.

  100. Slininger, P.J., Behle, R.W., Jackson, M.A., and Schisler, D.A., Discovery and development of biological agents to control crop pests, Neotrop. Entomol., 2003, vol. 32, no. 2, pp. 183–195.

    Article  Google Scholar 

  101. Sokolov, M.S. and Litvishko, E.V., Biological protection of the plants in USA, Zashch. Rast., 1993, no. 11, pp. 18–20.

  102. Steyaert, J.M., Stewart, A., Jaspers, M.V., et al., Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by Trichoderma hamatum,Mycologia, 2004, vol. 96, pp. 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  103. Sugiyama, A. and Yazaki, K., Root exudates of legume plants and their involvement in interactions with soil microbes, in Secretions and Exudates in Biological Systems, Vivanco, J.M. and Baluška, F., Eds., Berlin: Springer-Verlag, 2012, pp. 27–48.

    Google Scholar 

  104. Svistova, I.D., Shcherbakov, A.P., and Frolova, L.O., Phytotoxic activity of chernozem saprophytic micromycetes: specificity, sorption and stability of phytotoxins in soil, Appl. Biochem. Microbiol., 2003, vol. 39, no. 4, pp. 388–392.

    Article  CAS  Google Scholar 

  105. Svistova, I.D., Shcherbakov, A.P., and Frolova, L.O., Toxins of chernozemic micromycetes: The range of antibiotic effect and their role in formation of the microbial community, Eurasian Soil Sci., 2004, vol. 37, no. 10, pp. 1078–1085.

    Google Scholar 

  106. Tang, C.-H., Cai, W.-F., Kohl, K., and Nishimote, R.K., Plant stress and allelopathy, in Allelopathy, Organisms, Processes, and Applications, Inderjit, Dakshini, K.M.M., and Einhellig, F.A., Eds., Washington DC: Am. Chem. Soc., 1995, pp. 142–157.

  107. Tesio, F. and Ferrero, A., Allelopathy, a chance for sustainable weed management, Int. J. Sustainable Dev. World Ecol., 2010, vol. 17, no. 5, pp. 377–389.

    Article  Google Scholar 

  108. Turner, J.A. and Rice, E.L., Microbiological decomposition of ferulic acids in soil, J. Chem. Ecol., 1975. 1, pp. 41–58.

    Article  CAS  Google Scholar 

  109. Ulloa-Ogaz, A.L., Muñoz-Castellanos, L.N., and Nevarez-Moorillon, G.V., Biocontrol of phytopathogens: antibiotic production as mechanism of control, in The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, FORMATEX Microbiology Series no. 5, vol. 1, Méndez-Vilas, A., Ed., Badajoz: Formatex Res. Center, 2015, pp. 305–309.

  110. Xie, X.G. and Dai, C.C., Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari,Int. Biodeter. Biodegrad., 2015, vol. 104, pp. 498–507.

    Article  CAS  Google Scholar 

  111. Vanhoutte, I., Audenaert, K., and De Gelder, L., Biodegradation of mycotoxins: tales from known and unexplored worlds, Front. Microbiol., 2016, vol. 7, p. 561.

    Article  PubMed  PubMed Central  Google Scholar 

  112. van Loon, L.C., Plant responses to plant growth-promoting rhizobacteria, Eur. J. Plant Pathol., 2007, vol. 119, pp. 243–254.

  113. Vokou, D., Chalkos, D., Karamanlidou, G., and Yiangou, M., Activation of soil respiration and shift of the microbial population balance in soil as a response to Lavandula stoecha essential oil, J. Chem. Ecol., 2002, vol. 28, pp. 755–768.

    Article  CAS  PubMed  Google Scholar 

  114. Wardle, D.A., Nilsson, M.-C., Gallet, C., and Zackrisson, O., An ecosystem-level perspective of allelopathy, Biol. Rev., 1998, vol. 73, pp. 305–319.

    Article  Google Scholar 

  115. Weidenhamer, J.D., Hartnett, D.C., and Romeo, J.T., Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants, J. Appl. Ecol., 1989, vol. 26, pp. 613–624.

    Article  CAS  Google Scholar 

  116. Weir, T.L., Park, S.W., and Vivanco, J.M., Biochemical and physiological mechanisms mediated by allelochemicals, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 472–479.

    Article  CAS  PubMed  Google Scholar 

  117. Weisskopf, L., Tomasi, N., Santelia, D., et al., Isofavonoid exudation from white lupine roots is influenced by phosphate supply, root type and cluster-root stage, New Phytol., 2006, vol. 171, no. 3, pp. 657–668.

    CAS  PubMed  Google Scholar 

  118. Wink, M. and Twardowski, T., Allelochemical properties of alkaloids. Effects on plants, bacteria and protein biosynthesis, in Allelopathy: Basic and Applied Aspects, Rizvi, S.J.H. and Rizvi, V., Eds., London: Chapman and Hall, 1992, pp. 129–150.

    Google Scholar 

  119. Yang, L. and Stockigt, J., Trends for diverse production strategies of plant medicinal alkaloids, Nat. Prod. Rep., 2010, vol. 27, no. 10, pp. 1469–1479.

    Article  CAS  PubMed  Google Scholar 

  120. Zak, D.R., Holmes, W.E., White, D.C., et al., Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology, 2003, vol. 84, no. 8, pp. 2042–2050.

    Article  Google Scholar 

  121. Zeng, R.S., Mallik, A.U., and Luo, S.M., Allelopathy in Sustainable Agriculture and Forestry, New York: Springer-Verlag, 2008.

    Book  Google Scholar 

  122. Zhang, Z.Y., Pan, L.P., and Li, H.H., Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals, J. Appl. Microbiol., 2010, vol. 108, no. 5, pp. 1839–1849.

    Article  CAS  PubMed  Google Scholar 

  123. Zikmundova, M., Drandarov, K., Bigler, L., et al., Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona,Appl. Environ. Microbiol., 2002, vol. 68, no. 10, pp. 4863–4870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zvyagintsev, D.G., Strukturno-funktsional’naya rol’ pochvy v biosfere (Strucutral and Functional Role of Soil in Biosphere), Moscow: GEOS, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Polyak.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on animal welfare. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, Y.M., Sukcharevich, V.I. Allelopathic Interactions between Plants and Microorganisms in Soil Ecosystems. Biol Bull Rev 9, 562–574 (2019). https://doi.org/10.1134/S2079086419060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419060033

Keywords:

Navigation