Skip to main content
Log in

Control of mating plug expelling and sperm storage in Drosophila: A gynandromorph- and mutation-based dissection

  • Original Article
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Introduction

In this study, we analyzed gynandromorphs with female terminalia, to dissect mating-related female behaviors in Drosophila. Materials and methods: We used gynandromorphs, experimentally modified wild-type (Oregon-R) females, and mutant females that lacked different components of the female reproductive apparatus.

Results

Many of the gynandromorphs mated but did not expel the mating plug (MP). Some of these — with thousands of sperm in the uterus — failed to take up sperm into the storage organs. There were gynandromorphs that stored plenty of sperm but failed to release them to fertilize eggs. Expelling the MP, sperm uptake into the storage organs, and the release of stored sperm along egg production are separate steps occurring during Drosophila female fertility. Cuticle landmarks of the gynandromorphs revealed that while the nerve foci that control MP expelling and also those that control sperm uptake reside in the abdominal, the sperm release foci derive from the thoracic region of the blastoderm.

Discussion and conclusion

The gynandromorph study is confirmed by analyses of (a) mutations that cause female sterility: Fs(3)Avar (preventing egg deposition), Tm2gs (removing germline cells), and iab-4DB (eliminating gonad formation) and (b) by experimentally manipulated wild-type females: decapitated or cut through ventral nerve cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E. M., Wolfner, M. F. (2007) Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. J. Insect Physiol. 53, 319–331.

    Article  CAS  PubMed  Google Scholar 

  • Arthur, B. I., Hauschteck-Jungen, E., Nöthiger, R., Ward, P. I. (1998) A female nervous system is necessary for normal sperm storage in Drosophila melanogaster: a masculinized nervous system is as good as none. Proc. R. Soc. Lond. B 265, 1749–1753.

    Article  Google Scholar 

  • Avila, F. W., Wong, A., Sitnik, J. L., Wolfner, M. F. (2015) Don’t pull the plug! The Drosophila mating plug preserves fertility. Fly 9, 62–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bairati, A., Perotti, M. E. (1970) Occurrence of a complete plug in the genital duct of Drosophila females after mating. Drosophila Information Service 45, 67–68.

    Google Scholar 

  • Barth, J. M., Szabad, J., Hafen, E., Köhler, K. (2011) Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ. 18, 915–924.

    Article  CAS  PubMed  Google Scholar 

  • Bender, W. (2008) MicroRNAs in the Drosophila bithorax complex. Genes Dev. 22, 14–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram, M. J., Neubaum, D. M., Wolfner, M. F. (1996) Localization of the Drosophila accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochem. Mol. Biol. 26, 971–980.

    Article  CAS  PubMed  Google Scholar 

  • Bloch Qazi, M. C., Heifetz, Y., Wolfner, M. F. (2003) The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster. Dev. Biol. 256, 195–211.

    Article  CAS  PubMed  Google Scholar 

  • Bloch Qazi, M. C., Wolfner, M. E. (2003) An early role for the Drosophila melanogaster male seminal protein Acp36DE in female sperm storage. J. Exp. Biol. 206, 3521–528.

    Article  PubMed  Google Scholar 

  • Bloch Qazi, M. C., Wolfner, M. F. (2006) Emergence of sperm from female storage sites has egg-influenced and egg-independent phases in Drosophila melanogaster. Biol. Lett. 2, 128–130.

    Article  PubMed  Google Scholar 

  • Boyle, M., DiNardo, S. (1995) Specification, migration and assembly of the somatic cells of the Drosophila gonad. Development 121, 1815–1825.

    CAS  PubMed  Google Scholar 

  • Bussell, J. J., Yapici, N., Zhang, S. X., Dickson, B. J., Vosshall, L. B. (2014) Abdominal-B neurons control Drosophila virgin female receptivity. Curr. Biol. 24, 1584–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busturia, A., Casanova, J., Sanchez-Herrero, J., Gonzalez, R., Morata, G. (1989) Genetic structure of the abd-A gene of Drosophila. Development 107, 575–583.

    CAS  PubMed  Google Scholar 

  • Cook, R. (1978) The reproductive behaviour of gynandromorphic Drosophila melanogaster. Z. Naturforsch. 33c, 744–754.

    Article  Google Scholar 

  • Cumberledge, S., Szabad, J., Sakonju, S. (1992) Gonad formation and development requires the abd-A domain of the bithorax complex in Drosophila melanogaster. Development 115, 395–402.

    CAS  PubMed  Google Scholar 

  • Erdélyi, M., Michon, A. M., Guichet, A., Glotzer, J. B., Ephrussi, A. (1995) Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 377, 524–527.

    Article  PubMed  Google Scholar 

  • Erdélyi, M., Szabad, J. (1989) Isolation and characterization of dominant female sterile mutations of Drosophila melanogaster. I. Mutations on the third chromosome. Genetics 122, 111–127.

    PubMed  PubMed Central  Google Scholar 

  • Feng, K., Palfreyman, M. T., Hasemeyer, M., Talsma, A., Dickson, B. J. (2014) Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83, 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Garaulet, D. L., Castellanos, M. C., Bejarano, F., Sanfilippo, P., Tyler, D. M., Allan, D. W., Sanchez-Herrero, E., Lai, E. C. (2014) Homeotic function of Drosophila bithorax-complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the CNS. Dev. Cell 29, 635–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, J. C. (1978) Behavioral analysis in Drosophila mosaics. In: Gehring, W. J. (ed.) Genetic Mosaics and Cell Differentiation. Springer-Verlag, Berlin, pp. 259–305.

    Chapter  Google Scholar 

  • Hartenstein, V. (1993) Atlas of Drosophila development. Retrieved from http://www.sdbonline.org/fly/atlas/0607.htm

  • Hasemeyer, M., Yapici, N., Heberlein, U., Dickson, B. J. (2009) Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61, 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Heifetz, Y., Lindner, M., Garini, Y., Wolfner, M. F. (2014) Mating regulates neuromodulator ensembles at nerve termini innervating the Drosophila reproductive tract. Curr. Biol. 24, 731–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildreth, P. E., Lucchesi, J. C. (1963) Fertilization in Drosophila. I. Evidence for regular occurrence of monospermy. Dev. Biol. 6, 262–278.

    Article  CAS  PubMed  Google Scholar 

  • Hosken, D. J., Martin, O. Y., Wigby, S., Chapman, T., Hodgson, D. J. (2009) Sexual conflict and reproductive isolation in flies. Biol. Lett. 5, 697–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta, Y., Benzer, S. (1972) Mapping of behavior in Drosophila mosaics. Nature 240, 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Hotta, Y., Benzer, S. (1976) Courtship in Drosophila mosaics: sex-specific foci for sequential action patterns. Proc. Natl. Acad. Sci. U. S. A. 73, 4154–4158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jallon, J. M., Hotta, Y. (1979) Genetic and behavioral studies of Drosophila female sex appeal. Behav. Genet. 9, 257–275.

    Article  CAS  PubMed  Google Scholar 

  • Janning, W. (1978) Gynandromoph fate maps in Drosophila. In: Gehring, W. J. (ed.) Genetic Mosaics and Cell Differentiation. Springer-Verlag, Berlin, Heidelberg, New York, pp. 1–28.

    Google Scholar 

  • Karch, F., Weiffenbach, B., Peifer, M., Bender, W., Duncan, I., Celniker, S., Crosby, M., Lewis, E. B. (1985) The abdominal region of the bithorax complex. Cell 43, 81–96.

    Article  CAS  PubMed  Google Scholar 

  • Kubli, E., Bopp, D. (2012) Sexual behavior: how sex peptide flips the postmating switch of female flies. Curr. Biol. 22, R520–522.

    Article  CAS  PubMed  Google Scholar 

  • LaFlamme, B. A., Ram, K. R., Wolfner, M. F. (2012) The Drosophila melanogaster seminal fluid protease “seminase” regulates proteolytic and post-mating reproductive processes. PIoS Genet. 8, e1002435.

    CAS  Google Scholar 

  • Lung, O., Wolfner, M. F. (2001) Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol. 31, 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Mattei, A. M., Riccio, M. L., Avila, F. W., Wolfner, M. F. (2015) Integrated 3D view of postulating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning. Proc. Natl. Acad. Sci. USA 112, 8475–8480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton, C. A., Nongthomba, U., Parry, K., Sweeney, S. T., Sparrow, J. C., Elliott, C. J. H. (2006) Neuromuscular organization and aminergic modulation of contractions in the Drosophila ovary. BMC Biol. 4, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubaum, D. M., Wolfner, M. F. (1999) Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics 153, 845–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polak, M., Starmer, W. T., Barker, J. S. F. (1998) A mating plug and male mate choice in Drosophila hibisci Bock. Animal Behavior 56, 919–926.

    Article  CAS  Google Scholar 

  • Power, M. E. (1948) The thoracico-abdominal nervous system of an adult insect Drosophila melanogaster. J. Comp. Neurol. 88, 347–409.

    Article  CAS  PubMed  Google Scholar 

  • Rezával, C., Nojima, T., Neville, M. C., Lin, A. C., Goodwin, S. F. (2014) Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Curr. Biol. 24, 1–6.

    Article  CAS  Google Scholar 

  • Rezával, C., Pavlou, H. J., Dornan, A. J., Chan, Y. B., Kravitz, E. A., Goodwin, S. F. (2012) Neural circuitry underlying Drosophila female postmating behavioral responses. Curr. Biol. 22, 1155–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santel, A., Winhauer, T., Blümer, N., Renkawitz-Pohl, N. (1997) The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif. Mech. Dev. 64, 19–33.

    Article  CAS  PubMed  Google Scholar 

  • Szabad, J., Fajszi, C. (1982) Control of female reproduction in Drosophila: genetic dissection using gynandromorphs. Genetics 100, 61–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szabad, J., Máthé, E., Puro, J. (1995) Horka, a dominant mutation of Drosophila, induces nondisjunction and, through paternal effect, chromosome loss and genetic mosaics. Genetics 139, 1585–1599.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szabad, J., Nöthiger, R. (1992) Gynandromorphs of Drosophila suggest one common primordium for the somatic cells of the female and male gonads in the region of abdominal segments 4 and 5. Development 115, 527–533.

    CAS  PubMed  Google Scholar 

  • Szalontai, T., Gáspár, I., Belecz, I., Kerekes, I., Erdélyi, M., Boros, I., Szabad, J. (2009) HorkaD, a chromosome instability-causing mutation in Drosophila, is a dominant-negative allele of lodestar. Genetics 181, 367–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takami, Y., Sasabe, M., Nagata, N., Sota, T. (2008) Dual function of seminal substances for mate guarding in a ground beetle. Behav. Ecol. 19, 1173–1178.

    Article  Google Scholar 

  • Tompkins, L., Hall, J. C. (1983) Identification of brain sites controlling female receptivity in mosaics of Drosophila melanogaster. Genetics 103, 179–195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremml, G., Bienz, M. (1989) Homeotic gene expression in the visceral mesoderm of Drosophila embryos. EMBO J. 8, 2677–2685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villella, A., Hall, J. C. (2008) Neurogenetics of courtship and mating in Drosophila. Adv Genet. 62, 67–184.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. H., Rumpf, S., Xiang, Y., Gordon, M. D., Song, W., Jan, L. Y., Jan, Y. N. (2009) Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, C., Pan, Y., Robinett, C. C., Meissner, G. W., Baker, B. S. (2014) Central brain neurons expressing doublesex regulate female receptivity in Drosophila. Neuron 83, 149–163.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Szabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabad, J., Peng, J. & Kubli, E. Control of mating plug expelling and sperm storage in Drosophila: A gynandromorph- and mutation-based dissection. BIOLOGIA FUTURA 70, 301–311 (2019). https://doi.org/10.1556/019.70.2019.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/019.70.2019.34

Keywords

Navigation