Skip to main content
Log in

Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

This work investigates the machining temperatures of ultra-fine-grained titanium (UFG Ti), prepared by equal channel angular extrusion, through analytical modeling. UFG Ti has great usefulness in biomedical applications because of its high mechanical strength, sufficient manufacturability, and high biocompatibility. The temperatures were predicted using a physics-based predictive model based on material constitutive relation and mechanics of the orthogonal cutting process. The minimization between the stress calculated using Johnson–Cook constitutive model and the same stress calculated using mechanics model yields the estimation of machining temperatures at two deformation zones. Good agreements are observed upon validation to the values reported in the literature. The machinability of UFG Ti is investigated by comparing its machining temperature to that of Ti–6Al–4V alloy under the same cutting conditions. Significantly lower temperatures are observed in machining UFG Ti. The computational efficiency of the presented model is investigated by comparing its average computational time (~ 0.5 s) to that of a widely used modified chip formation model (8900 s) with comparable prediction accuracy. This work extends the applicability of the presented temperature model to a broader class of materials, specifically ultra-fine-grained metals. The high computational efficiency allows the in situ temperature prediction and optimization of temperature condition with process parameters planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elias CN, Meyers MA, Valiev RZ, Monteiro SN (2013) Ultra fine grained titanium for biomedical applications: an overview of performance. J Mater Res Technol 2(4):340–350. https://doi.org/10.1016/j.jmrt.2013.07.003

    Article  Google Scholar 

  2. Ning J, Nguyen V, Liang SY (2018) Analytical modeling of machining forces of ultra-fine-grained titanium. The Int J Adv Manuf Technol 101(1–4):627–636. https://doi.org/10.1007/s00170-018-2889-6

    Google Scholar 

  3. Anselme K, Noe B, Hardouin P (1999) Human osteoblast adhesion on titanium alloy, stainless steel, glass and plastic substrates with same surface topography. J Mater Sci Mater Med 10(12):815–819. https://doi.org/10.1023/A:1008992109670

    Article  Google Scholar 

  4. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2001) Influence of ECAP routes on the microstructure and properties of pure Ti. Mater Sci Eng A 299(1–2):59–67. https://doi.org/10.1016/S0921-5093(00)01411-8

    Article  Google Scholar 

  5. Stolyarov VV, Zhu YT, Lowe TC, Valiev RZ (2001) Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mater Sci Eng A 303(1–2):82–89. https://doi.org/10.1016/S0921-5093(00)01884-0

    Article  Google Scholar 

  6. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2003) Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Mater Sci Eng A 343(1–2):43–50. https://doi.org/10.1016/S0921-5093(02)00366-0

    Article  Google Scholar 

  7. Horita Z, Fujinami T, Langdon TG (2001) The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties. Mater Sci Eng A 318:34–41. https://doi.org/10.1016/S0921-5093(01)01339-9

    Article  Google Scholar 

  8. Longbottom JM, Lanham JD (2005) Cutting temperature measurement while machining—a review. Aircr Eng Aerosp Technol 77(2):122–130. https://doi.org/10.1108/00022660510585956

    Article  Google Scholar 

  9. Komanduri R, Hou ZB (2001) A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34(10):653–682. https://doi.org/10.1016/S0301-679X(01)00068-8

    Article  Google Scholar 

  10. Umbrello D, M’saoubi R, Outeiro JC (2007) The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47(3–4):462–470. https://doi.org/10.1016/j.ijmachtools.2006.06.006

    Article  Google Scholar 

  11. Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann-Manuf Technol 61(1):547–550. https://doi.org/10.1016/j.cirp.2012.03.100

    Article  Google Scholar 

  12. Gonzalo O, Jauregi H, Uriarte LG, de Lacalle LL (2009) Prediction of specific force coefficients from a FEM cutting model. Int J Adv Manuf Technol 43(3–4):348. https://doi.org/10.1007/s00170-008-1717-9

    Article  Google Scholar 

  13. Danish M, Ginta TL, Habib K, Carou D, Rani AMA, Saha BB (2017) Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. Int J Adv Manuf Technol 91(5–8):2855–2868. https://doi.org/10.1007/s00170-016-9893-5

    Article  Google Scholar 

  14. Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155:1350–1356. https://doi.org/10.1016/j.jmatprotec.2004.04.210

    Article  Google Scholar 

  15. Feng Y, Lu YT, Lin YF et al (2018) Inverse analysis of the cutting force in laser-assisted milling on Inconel 718. Int J Adv Manuf Technol 96(1–4):905–914. https://doi.org/10.1007/s00170-018-1670-1

    Article  Google Scholar 

  16. Ning J, Liang SY (2019) Predictive modeling of machining temperatures with force-temperature correlation using cutting mechanics and constitutive relation. Mater 12(2):284. https://doi.org/10.3390/ma12020284

    Article  Google Scholar 

  17. Ning J, Liang S (2018) Prediction of temperature distribution in orthogonal machining based on the mechanics of the cutting process using a constitutive model. J Manuf Mater Process 2(2):37. https://doi.org/10.3390/jmmp2020037

    Google Scholar 

  18. Ning J, Liang S (2018) Evaluation of an analytical model in the prediction of machining temperature of AISI 1045 steel and AISI 4340 steel. J Manuf Mater Process 2(4):74. https://doi.org/10.3390/jmmp2040074

    Google Scholar 

  19. Ning J, Liang SY (2019) A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel. Int J Adv Manuf Technol 102(9–12):3109–3119. https://doi.org/10.1007/s00170-019-03415-9

    Article  Google Scholar 

  20. Shalaby MA, El Hakim MA, Veldhuis SC (2018) A thermal model for hard precision turning. Int J Adv Manuf Technol 98:2401–2413. https://doi.org/10.1007/s00170-018-2389-8

    Article  Google Scholar 

  21. Lalwani DI, Mehta NK, Jain PK (2009) Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. J Mater Process Technol 209(12–13):5305–5312. https://doi.org/10.1016/j.jmatprotec.2009.03.020

    Article  Google Scholar 

  22. Oxley PLB (1989) The Mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, London

    Google Scholar 

  23. Komanduri R, Hou ZB (2001) Thermal modeling of the metal cutting process—part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source. Int J Mech Sci 43(1):89–107. https://doi.org/10.1016/S0020-7403(99)00105-8

    Article  MATH  Google Scholar 

  24. Ning J, Nguyen V, Huang Y, Hartwig KT, Liang SY (2018) Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int J Adv Manuf Technol 99(5–8):1131–1140. https://doi.org/10.1007/s00170-018-2508-6

    Article  Google Scholar 

  25. Ivester RW, Kennedy M, Davies M, Stevenson R, Thiele J, Furness R, Athavale S (2000) Assessment of machining models: progress report. Mach Sci Technol 4(3):511–538. https://doi.org/10.1080/10940340008945720

    Article  Google Scholar 

  26. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676

    Article  Google Scholar 

  27. Shrot A, Bäker M (2012) Determination of Johnson–Cook parameters from machining simulations. Comput Mater Sci 52(1):298–304. https://doi.org/10.1016/j.commatsci.2011.07.035

    Article  Google Scholar 

  28. Agmell M, Ahadi A, Ståhl JE (2014) Identification of plasticity constants from orthogonal cutting and inverse analysis. Mech Mater 77:43–51. https://doi.org/10.1016/j.mechmat.2014.07.005

    Article  Google Scholar 

  29. Ning J, Liang SY (2018) Model-driven determination of Johnson–Cook material constants using temperature and force measurements. Int J Adv Manuf Technol 97(1–4):1053–1060. https://doi.org/10.1007/s00170-018-2022-x

    Article  Google Scholar 

  30. Ning J, Liang SY (2019) Inverse identification of Johnson–Cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int J Adv Manuf Technol 102(9–12):2865–2876. https://doi.org/10.1007/s00170-019-03286-0

    Article  Google Scholar 

  31. Seo S, Min O, Yang H (2005) Constitutive equation for Ti–6Al–4V at high temperatures measured using the SHPB technique. Int J Impact Eng 31(6):735–754. https://doi.org/10.1016/j.ijimpeng.2004.04.010

    Article  Google Scholar 

  32. Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal MH, Wilthan B, Pottlacher G (2006) Thermophysical properties of solid and liquid Ti–6Al–4V (TA6 V) alloy. Int J Thermophys 27(2):507–529. https://doi.org/10.1007/PL00021868

    Article  Google Scholar 

  33. Pan Z, Lu YT, Lin YF, Hung TP, Hsu FC, Liang SY (2017) Analytical model for force prediction in laser-assisted milling of IN718. Int J Adv Manuf Technol 90(9–12):2935–2942. https://doi.org/10.1007/s00170-016-9629-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqiang Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subject performed by any of the authors.

Appendix

Appendix

See Tables 6 and 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Nguyen, V., Huang, Y. et al. Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction. Bio-des. Manuf. 2, 153–160 (2019). https://doi.org/10.1007/s42242-019-00044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-019-00044-9

Keywords

Navigation