Skip to main content
Log in

Hardy and Rellich inequalities for anisotropic p-sub-Laplacians

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

In this paper we establish the subelliptic Picone type identities. As consequences, we obtain Hardy and Rellich type inequalities for anisotropic p-sub-Laplacians which are operators of the form

$$\begin{aligned} {\mathcal {L}}_{p}f:= \sum _{i=1}^{N} X_i\left( |X_i f|^{p_i-2} X_i f \right) ,\quad 1<p_i<\infty , \end{aligned}$$

where \(X_i\), \(i=1,\ldots , N\), are the generators of the first stratum of a stratified (Lie) group. Moreover, analogues of Hardy type inequalities with multiple singularities and many-particle Hardy type inequalities are obtained on stratified groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allegretto, W., Huang, Y.X.: A Picone’s identity for the p-Laplacian and applications. Nonlinear Anal. 32, 819–830 (1998)

    Article  MathSciNet  Google Scholar 

  2. Anotontsev, S.N., Diaz, J.L., Shmarev, S.: Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Springer, Berlin (2012)

    Google Scholar 

  3. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  4. Belloni, M., Kawohl, B.: The pseudo-p-Laplace eigenvalue problem and viscosity solutions as \(p\rightarrow \infty \). ESAIM Control Optim. Calc. Var. (1) 10, 28–52 (2004)

    Article  MathSciNet  Google Scholar 

  5. Feng, T., Cui, X.: Anisotropic Picone identities and anisotropic Hardy inequalities. J. Inequal. Appl. 2017, 16 (2017)

    Article  MathSciNet  Google Scholar 

  6. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A., Tidblom, J.: Many-particle Hardy inequalities. J. Lond. Math. Soc. 77, 99–115 (2008)

    Article  MathSciNet  Google Scholar 

  7. Kapitanski, L., Laptev, A.: On continuous and discrete Hardy inequalities. J. Spectr. Theory 6, 837–858 (2016)

    Article  MathSciNet  Google Scholar 

  8. Lions, J.L.: Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  9. Lundholm, D.: Geometric extensions of many-particle Hardy inequalities. J. Phys. A: Math. Theor. 48, 175203 (2015)

    Article  MathSciNet  Google Scholar 

  10. Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129, 3623–3630 (2001)

    Article  MathSciNet  Google Scholar 

  11. Polidoro, S., Ragusa, M.A.: Hölder regularity for solutions of ultraparabolic equations in divergence form. Potent. Anal. 14(4), 341–350 (2001)

    Article  Google Scholar 

  12. Polidoro, S., Ragusa, M.A.: Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term. Rev. Math. Iberoam. 24(3), 1011–1046 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ruzhansky, M., Suragan, D.: On horizontal Hardy, Rellich, Caffarelli–Kohn–Nirenberg and \(p\)-sub-Laplacian inequalities on stratified groups. J. Differ. Equ. 262, 1799–1821 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ruzhansky, M., Suragan, D.: Anisotropic \(L^{2}\)-weighted Hardy and \(L^{2}\)-Caffarelli–Kohn–Nirenberg inequalities. Commun. Contemp. Math. 19(6), 1750014 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ruzhansky, M., Suragan, D.: A note on stability of Hardy inequalities. Ann. Funct. Anal. 9, 451–462 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ruzhansky, M., Suragan, D.: Hardy Inequalities on Homogeneous Groups, Progress in Mathematics, vol. 327. Birkhäuser (open access book) (2019)

  17. Tang, Q.: Regularity of minimizer of non-isotropic integrals of the calculus of variations. Ann. Mat. Pura Appl. 164, 77–87 (1993)

    Article  MathSciNet  Google Scholar 

  18. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  19. Zhang, C.: Quantitative unique continuation for the heat equation with Coulomb potentials. Math. Control Relat. Fields 8(3–4), 1097–1116 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Ruzhansky was supported by the EPSRC Grant EP/R003025/1, by the Leverhulme Research Grant RPG-2017-151, and by the FWO Odysseus Grant. B. Sabitbek was supported by the MESRK target program BR05236656 and the Nazarbayev University SPG Grant SST 2018040. D. Suragan was supported in parts by the Nazarbayev University SPG Grant. No new data was collected or generated during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Suragan.

Additional information

Communicated by Maria Alessandra Ragusa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzhansky, M., Sabitbek, B. & Suragan, D. Hardy and Rellich inequalities for anisotropic p-sub-Laplacians. Banach J. Math. Anal. 14, 380–398 (2020). https://doi.org/10.1007/s43037-019-00011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43037-019-00011-7

Keywords

Mathematics Subject Classification

Navigation