Skip to main content
Log in

Landscape Approach to the Modeling of Land-Cover Dynamics with Remote Methods

  • SYSTEMATIC STUDY OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

The article discusses remote methods for the description of the intraseasonal dynamics of soil and vegetation moisture. The field moisture content of the soil and vegetation cover is described by an integral indicator that takes into account the moisture content of the upper soil horizon (5–10 cm), grass phytomass, and leaves of trees and shrubs. The integrated field moisture demonstrates a reliable association with the normalized differential water index (NDWI); the determination coefficient R2 reaches values of 0.91 for individual classes of tracts. The most significant factors determining the loss of moisture during the summer period are the amount of photosynthetically active phytomass, the potential influx of solar radiation during the study period, and the moisture reserve in the soil and vegetation at the beginning of the growing season. These factors describe 67% of the NDWI difference between May and August 2016 in forest areas and 89% in the steppes. The results can be used to search for fire hazardous areas in the steppes and forests, as well as for the monitoring of vineyards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Böhner, J. and Selige, T., Spatial prediction of soil attributes using terrain analysis and climate regionalization, Göttinger Geogr.Abh., 2006, vol. 115, pp. 13–27.

    Google Scholar 

  2. Carlson, T., An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery, Sensors, 2007, vol. 7, pp. 1612–1629.

    Article  Google Scholar 

  3. Ceccato, P., Gobron, N., Flasse, S., Pinty, B., and Tarantola, S., Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1. Theoretical approach, Remote Sens. Environ., 2002, vol. 82, pp. 188–197.

    Article  Google Scholar 

  4. Dobson, M.C. and Ulaby, F.T., Active microwave soil moisture research, IEEE Trans. Geosci. Remote Sens., 1985, vol. GE-24, no. 1, pp. 23–36.

    Article  Google Scholar 

  5. Escorihuela, M.J. and Quintana-Seguí, P., Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes, Remote Sens. Environ., 2016, vol. 180, pp. 99–114.

    Article  Google Scholar 

  6. Gao, B.-C., NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 1996, vol. 58, no. 3, pp. 257–266.

    Article  Google Scholar 

  7. Ghulam, A., Li, Z.-L., Qin, Q., Yimit, H., and Wange, J., Estimating crop water stress with ETM+NIR and SWIR data, Agric. For. Meteorol., 2008, vol. 148, pp. 1679–1695.

    Article  Google Scholar 

  8. Gillon, D., Dauriac, F., Deshayes, M., Valette, J.C., and Moro, C., Estimation of foliage moisture content using near infrared reflectance spectroscopy, Agric. For. Meteorol., 2004, vol. 124, pp. 51–62.

    Article  Google Scholar 

  9. Gorbunov, R.V., Zuev, A.V., and Smirnov, V.O., Water-balance studies in Karadag landscape-ecological stationer, in 100 let Karadagskoi nauchnoi stantsii im. T.I. Vyazemskogo (Collection of Scientific Research Works Dedicated to the 100 Anniversary of Karadag Scientific Station Named after T.I. Vyazemskii), Simferopol: N. Orianda, 2015, pp. 734–747.

    Google Scholar 

  10. Maki, M., Ishiahrab, M., and Tamura, M., Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data, Remote Sens. Environ., 2004, vol. 90, pp. 441–450.

    Article  Google Scholar 

  11. Moran, M.S., Clarke, T.R., Inoue, Y., and Vidal, A., Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sens. Environ., 1994, vol. 49, pp. 246–263.

    Article  Google Scholar 

  12. Morozova, A.L. and Vronskii, A.A., Priroda Karadaga (Karadag Nature), Kiev: Naukova Dumka, 1989.

  13. Nijland, W., Coops, N.C., Macdonald, S.E., Nielsen, S.E., Bater, C.W., White, B., Ogilvie, J., and Stadt, J., Remote sensing proxies of productivity and moisture predict forest stand type and recovery rate following experimental harvest, For. Ecol. Manage., 2015, vol. 357, pp. 239–247.

    Article  Google Scholar 

  14. Peuelas, J., Filella, I., Biel, C., Serrano, L., and Sav, R., The reflectance at the 950-970 nm region as an indicator of plant water status, Int. J. Remote Sens., 1993, vol. 14, no. 10, pp. 1887–1905.

    Article  Google Scholar 

  15. Sadeghi, M., Babaeian, E., Tuller, M., and Jones, S.B., The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations, Remote Sens. Environ., 2017, vol. 198, pp. 52–68.

    Article  Google Scholar 

  16. Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., and Teuling, A.J., Investigating soil moisture–climate interactions in a changing climate: a review, Earth-Sci. Rev., 2010, vol. 99, nos. 3–4, pp. 125–161.

    Article  CAS  Google Scholar 

  17. Shvetsov, E.G., Ruzhichka, Z., and Mironov, V.L., Applicability of SMOS satellite data for evaluation of wild fire danger in Krasnoyarsk krai, Vestn. Sib. Gos. Agrar. Univ., 2013, no. 2 (48), pp. 110–115.

  18. Sysuev, V.V., Fiziko-matematicheskie osnovy landshaftovedeniya (Physical-Mathematical Basis of Landscape Science), Moscow: Mosk. Gos. Univ., 2003.

  19. Transformatsiya landshaftno-ekologicheskikh protsessov v Krymu v XX veke–nachale XXI veka (Transformation of Landscape-Ecological Processes in Crimea in 20th Century–Beginning 21st Century), Simferopol: Dolya, 2010.

  20. Yebra, M., Dennison, P.E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt, E.R., Jr., Danson, F.M., Qi, Y., and Jurdao, S., A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products, Remote Sens. Environ., 2013, vol. 136, pp. 455–468.

    Article  Google Scholar 

  21. Wigneron, J.-P., Chanzy, A., Calvet, J.-C., and Bruguier, N., A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields, Remote Sens. Environ., 1995, vol. 51, no. 3, pp. 331–341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Kharitonova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonova, T.I., Surkov, N.V. Landscape Approach to the Modeling of Land-Cover Dynamics with Remote Methods. Arid Ecosyst 10, 10–16 (2020). https://doi.org/10.1134/S2079096120010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079096120010096

Keywords:

Navigation