Skip to main content
Log in

Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

This study proposed a bio-inspired motion planning approach for the reaching movement of a robot manipulator based on a novel intrinsic tau jerk guidance strategy, which was established by some cognitive science researchers when they studied motion patterns through biology. In accordance with the rules of human reaching movement, the intrinsic tau jerk guidance strategy ensures continuity of the acceleration; further, it also ensures that its value is zero at the start and end of the movement. The approach has been implemented on a three-degrees-of-freedom 3R planar manipulator. The results show that, within a defined time, both the position gap and attitude gap can be reposefully closed, and the curves of joint velocity, acceleration, and driving torque are continuous and smooth. According to the dynamic analysis, the proposed approach tends to consume less energy. The bio-inspired method has the potential to be applied in particular scenarios in the future, such as a mobile robot with a manipulator exploring an unknown environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Piazzi A, Visioli A (1997) An interval algorithm for minimum-jerk trajectory planning of robot manipulators. In: Proceedings of the 36th IEEE conference on decision and control. IEEE, San Diego, pp 1924–1927

  2. Lippiello V, Ruggiero F (2012) 3D monocular robotic ball catching with an iterative trajectory estimation refinement. In: International conference on robotics and automation. IEEE, Saint Paul, pp 3950–3955

  3. Lampariello R, Nguyen-Tuong D, Castellini C et al (2011) Trajectory planning for optimal robot catching in real-time. In: International conference on robotics and automation. IEEE, Shanghai, pp 3719–3726

  4. Riley M, Atkeson CG (2002) Robot catching: towards engaging human-humanoid interaction. Auton Robot 12(1):119–128

    Article  MATH  Google Scholar 

  5. Khan AT, Li S, Stanimirovic PS et al (2018) Model-free optimization using eagle perching optimizer. arXiv:1807.02754v1

  6. Jiang X, Li S (2017) BAS: beetle antennae search algorithm for optimization problems. arXiv:1710.10724v1

  7. Jiang X, Li S (2017) Beetle antennae search without parameter tuning (BAS-WPT) for multi-objective optimization. arXiv:1711.02395v1

  8. Li S, He J, Li Y et al (2017) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 28(2):415–426

    Article  MathSciNet  Google Scholar 

  9. Li S, Wang H, Rafique MU (2018) A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans Neural Netw Learn Syst 29(5):1908–1918

    Article  MathSciNet  Google Scholar 

  10. Regan D, Gray R (2001) Hitting what one wants to hit and missing what one wants to miss. Vis Res 41(25–26):3321–3329

    Article  Google Scholar 

  11. Schiff W, Caviness JA, Gibson JJ (1962) Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science 136(15):982–983

    Article  Google Scholar 

  12. Yonas A, Bechtold AG, Frankel D et al (1977) Development of sensitivity to information for impending collision. Atten Percep Psychophys 21(2):97–104

    Article  Google Scholar 

  13. Lee DN (1976) Theory of visual control of braking based on information about time-to-collision. Perception 5(4):437–459

    Article  Google Scholar 

  14. Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293(5830):293–294

    Article  Google Scholar 

  15. Lee DN (2009) General tau theory: evolution to date. Perception 38(6):837–850

    Article  Google Scholar 

  16. Lee DN (1998) Guiding movement by coupling Taus. Ecol Psychol 10(3–4):221–250

    Article  Google Scholar 

  17. Wagner H (1982) Flow-field variables trigger landing in flies. Nature 297(5862):147–148

    Article  Google Scholar 

  18. Hatsopoulos N, Gabbiani F, Laurent G (1995) Elementary computation of object approach by a wide-field visual neuron. Science 270(5238):1000–1003

    Article  Google Scholar 

  19. Sun H, Frost BJ (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1(4):296–303

    Article  Google Scholar 

  20. Rock P, Harris MG (2006) Tau as a potential control variable for visually guided braking. J Exp Psychol Hum Percept Perform 32(2):251–267

    Article  Google Scholar 

  21. Lee DN, Craig CM, Grealy MA (1999) Sensory and intrinsic coordination of movement. Proc Biol Sci 266(1432):2029–2035

    Article  Google Scholar 

  22. Morrone MC, Tosetti M, Montanaro D et al (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3(12):1322–1328

    Article  Google Scholar 

  23. Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15(5):453–458

    Article  Google Scholar 

  24. Farid K (2014) Four-dimensional guidance and control of movement using time-to-contact: application to automated docking and landing of unmanned rotorcraft systems. Int J Robot Res 33(2):237–267

    Article  Google Scholar 

  25. Mohamad TA, Victor MB, William H (2015) Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J Guid Control Dyn 38(2):249–262

    Article  Google Scholar 

  26. Zhang Z, Xie P, Ma O (2014) Bio-inspired trajectory generation for uav perching movement based on tau theory. Int J Adv Robot Syst 11:1–11

    Article  Google Scholar 

  27. Yang Z, Fang Z, Li P (2016) Bio-inspired collision-free 4D trajectory generation for UAVs using tau strategy. J Bionic Eng 13(1):84–97

    Article  Google Scholar 

  28. Zhang S, Zhang Z, Qian J (2014) Bio-inspired trajectory planning for robot catching movements based on tau theory. J Mech Eng 50(13):42–51

    Article  Google Scholar 

  29. Zhang Z, Zhang S, Xie P et al (2014) Bioinspired 4D trajectory generation for a UAS rapid point-to-point movement. J Bionic Eng 11(1):72–81

    Article  Google Scholar 

  30. Zhang S, Qian J, Zhang Z et al (2016) Age- and Parkinson’s disease-related evaluation of gait by general tau theory. Exp Brain Res 234(10):2829–2840

    Article  Google Scholar 

  31. Alexander RMN (1997) A minimum energy cost hypothesis for human arm trajectories. Biol Cybern 76(2):97–105

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang Z, Xie P, Ma O (2013) Bio-inspired trajectory generation for UAS perching. In: IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, Wollongong, pp 997–1002

  33. Georgopoulos AP (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46(4):725–743

    Article  Google Scholar 

  34. Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42(2):223–227

    Article  Google Scholar 

  35. Soechting JF, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1(7):710–720

    Article  Google Scholar 

  36. Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(2):331–348

    Article  Google Scholar 

  37. Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9):2318–2330

    Article  Google Scholar 

  38. Nagasaki H (1989) Asymmetric velocity and acceleration profiles of human arm movements. Exp Brain Res 74(2):319–326

    Article  Google Scholar 

  39. Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multi-joint arm movement. Biol Cybern 61(2):89–101

    Article  Google Scholar 

  40. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    Article  Google Scholar 

  41. Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915

    Article  Google Scholar 

  42. Fligge N (2012) Minimum jerk for human catching movements in 3D. In: IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics. IEEE, Rome, pp 581–586

  43. Corke PI (2017) Robotics, vision and control: fundamental algorithms in MATLAB. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 51005143) and Shanghai Science and Technology Commission (Grant No. 18JC1410402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, X. Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance. Adv. Manuf. 7, 315–325 (2019). https://doi.org/10.1007/s40436-019-00268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-019-00268-z

Keywords

Navigation