Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 16, 2020

Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy

  • Hongyan Yang , Xiaohong Zhan EMAIL logo , Hengchang Bu , Wanping Ma and Feiyun Wang

Abstract

Laser direct joining of carbon fiber reinforced thermoplastic (CFRTP) composite plate and titanium alloy plate with a thickness of 2 mm was performed with swing laser. Numerous air bubble of submillimeter size were observed inside the fusion zone of CFRTP and titanium alloy at the cross section of the joints. The air bubble characteristics were analyzed based on the morphology and size, while the formation mechanism of air bubble was further elucidated according to the nucleation mode, nucleation site and nucleation position. The results demonstrated that the nucleation modes of air bubble are substantially divided into homogeneous nucleation and heterogeneous nucleation, which is related to the nucleation sites. The nucleation mode presents a crucial factor influencing the position and morphology of air bubble. In addition, the air bubble characteristics are also determined by the clamp pressure and resin flow. The final morphology of air bubble is primarily represented by four typical types.


Corresponding author: Xiaohong Zhan, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China, E-mail:

Award Identifier / Grant number: NP2018461

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research is financially supported by the Fundamental Research Funds for the Central Universities, no. NP2018461.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zhou, Y., Zeng, W. D., Yu, H. Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Processing 2005, 393, 204–212; https://doi.org/10.1016/j.msea.2004.10.016.Search in Google Scholar

2. Zhisho, Z. J. Aeronautical Mater. 2014, 34, 44–50. https://doi.org/10.11868/j.issn.1005-5053.2014.4.00.Search in Google Scholar

3. Molitor, P., Barron, V., Young, T. M. Int. J. Adhesion Adhes. 2001, 21, 129–136; https://doi.org/10.1016/s0143-7496(00)00044-0.Search in Google Scholar

4. Gao, Q., Li, Y., Wang, H. Appl. Compos. Mater. 2019, 26, 1087–1099; https://doi.org/10.1007/s10443-019-09768-4.Search in Google Scholar

5. Lionetto, F., Mele, C., Leo, P. Compos. B Eng. 2018, 144, 134–42; https://doi.org/10.1016/j.compositesb.2018.02.026.Search in Google Scholar

6. Lionetto, F., Morillas, M. D., Pappada, S. Compos. Appl. Sci. Manuf. 2018, 104, 32–40; https://doi.org/10.1016/j.compositesa.2017.10.021.Search in Google Scholar

7. Nagatsuka, K. Q. J. Jpn. Weld. Soc. 2018, 87, 33–38; https://doi.org/10.2207/jjws.87.33.Search in Google Scholar

8. Buffa, G., Baffari, D., Campanella, D. Procedia Manuf. 2016, 5, 319–331; https://doi.org/10.1016/j.promfg.2016.08.028.Search in Google Scholar

9. Tanaka, K., Teramura, T., Katayama, T. WIT Trans. Built Environ. 2016, 391–401. https://doi.org/10.2495/HPSM160371.Search in Google Scholar

10. Arai, S., Kawahito, Y., Katayama, S. Mater. Des. 2014, 59, 448–453; https://doi.org/10.1016/j.matdes.2014.03.018.Search in Google Scholar

11. Jung, K., Kawahito, Y., Katayama, S. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 43–48; https://doi.org/10.1007/s40684-014-0007-2.Search in Google Scholar

12. Hussein, F. I., Akman, E., Oztoprak, B. G. Optic Laser Technol. 2013, 49, 143–152; https://doi.org/10.1016/j.optlastec.2012.12.028.Search in Google Scholar

13. Jung, K., Kawahito, Y., Takahashi, M. Mater. Des. 2013, 47, 179–188; https://doi.org/10.1016/j.matdes.2012.12.015.Search in Google Scholar

14. Lambiase, F., Genna, S., Lambiase, F., Genna, S. Optic Laser Technol. 2017, 88, 205–214; https://doi.org/10.1016/j.optlastec.2016.09.028.Search in Google Scholar

15. Rodriguez-vidal, E., Sanz, C., Lambarri, J. Optic Laser Technol. 2018, 104, 73–82; https://doi.org/10.1016/j.optlastec.2018.02.003.Search in Google Scholar

16. Jiao, J., Xu, Z., Wang, Q. Optic Laser Technol. 2018, 103, 170–176; https://doi.org/10.1016/j.optlastec.2018.01.023.Search in Google Scholar

17. Huang, Y., Meng, X., Xie, Y. Compos. Appl. Sci. Manuf. 2018, 112, 328–336; https://doi.org/10.1016/j.compositesa.2018.06.027.Search in Google Scholar

18. Feistauer, E., Santos, J., Amancio, F. Welding in the world Le Soudage Dans Le Monde, 2020, 1–15. https://doi.org/10.1007/s40194-020-00927-x.Search in Google Scholar

19. Kawahito, Y., Niwa, Y., Katayama, S. Weld. Int. 2014, 28, 107–113; https://doi.org/10.1080/09507116.2012.715883.Search in Google Scholar

20. Wahba, M., Kawahito, Y., Katayama, S. J. Mater. Process. Technol. 2011, 211, 1166–1174; https://doi.org/10.1016/j.jmatprotec.2011.01.021.Search in Google Scholar

21. Jiao, J., Jia, S., Xu, Z. Compos. B Eng. 2019. https://doi.org/10.1016/j.compositesb.2019.106911.Search in Google Scholar

22. Li, Y., Bu, H., Yang, H. J. Manuf. Process. 2020, 50, 366–379; https://doi.org/10.1016/j.jmapro.2019.12.023.Search in Google Scholar

23. Yan, M., Tian, X., Peng, G. Compos. Sci. Technol. 2018, 165, 140–147; https://doi.org/10.1016/j.compscitech.2018.06.023.Search in Google Scholar

24. Katayama, S., Kawahito, Y. Scripta Mater. 2008, 59, 1247–1250; https://doi.org/10.1016/j.scriptamat.2008.08.026.Search in Google Scholar

25. Wang, H., Chen, Y., Guo, Z. Appl. Sci. 2019, 9. https://doi.org/10.3390/app9030411.Search in Google Scholar

26. Fu, T., Ma, Y., Funfschilling, D. Chem. Eng. Sci. 2009, 64, 2392–2400; https://doi.org/10.1016/j.ces.2009.02.022.Search in Google Scholar

27. Li, X., Lu, F., Cui, H. Int. J. Adv. Manuf. Technol. 2014, 72, 241–254; https://doi.org/10.1007/s00170-014-5609-x.Search in Google Scholar

28. Zhang, Q., Wang, T., Yao, Z. Materialia. 2018. https://doi.org/10.1016/j.mtla.2018.09.030.Search in Google Scholar

Received: 2020-05-08
Accepted: 2020-07-25
Published Online: 2020-09-16
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0112/html
Scroll to top button