Skip to main content
Log in

Semiautomatic morphometric analysis of skeletal muscle obtained by needle biopsy in older adults

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Analysis of skeletal muscle mass and composition is essential for studying the biology of age-related sarcopenia, loss of muscle mass, and function. Muscle immunohistochemistry (IHC) allows for simultaneous visualization of morphological characteristics and determination of fiber type composition. The information gleaned from myosin heavy chain (MHC) isoform, and morphological measurements offer a more complete assessment of muscle health and properties than classical techniques such as SDS-PAGE and ATPase immunostaining; however, IHC quantification is a time-consuming and tedious method. We developed a semiautomatic method to account for issues frequently encountered in aging tissue. We analyzed needle-biopsied vastus lateralis (VL) of the quadriceps from a cohort of 14 volunteers aged 74.9 ± 2.2 years. We found a high correlation between manual quantification and semiautomatic analyses for the total number of fibers detected (r2 = 0.989) and total fiber cross-sectional area (r2 = 0.836). The analysis of the VL fiber subtype composition and the cross-sectional area also did not show statistically significant differences. The semiautomatic approach was completed in 10–15% of the time required for manual quantification. The results from these analyses highlight some of the specific issues which commonly occur in aged muscle. Our methods which address these issues underscore the importance of developing efficient, accurate, and reliable methods for quantitatively analyzing the skeletal muscle and the standardization of collection protocols to maximize the likelihood of preserving tissue quality in older adults. Utilizing IHC as a means of exploring the progression of disease, aging, and injury in the skeletal muscle allows for the practical study of muscle tissue down to the fiber level. By adding editing modules to our semiautomatic approach, we accurately quantified the aging muscle and addressed common technical issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Larsson L, Degens H, Li M, Salviati L, Lee Yi, Thompson W et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 2019;99(1):427–511. doi:https://doi.org/10.1152/physrev.00061.2017.

  2. Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3–19. https://doi.org/10.1002/jcsm.12238.

    Article  PubMed  Google Scholar 

  3. Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev Camb Philos Soc. 2015;90(4):1279–97. https://doi.org/10.1111/brv.12157.

    Article  PubMed  Google Scholar 

  4. Demontis F, Piccirillo R, Goldberg AL, Perrimon N. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech. 2013;6(6):1339–52. https://doi.org/10.1242/dmm.012559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demontis F, Piccirillo R, Goldberg AL, Perrimon N. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell. 2013;12(6):943–9. https://doi.org/10.1111/acel.12126.

    Article  CAS  PubMed  Google Scholar 

  6. Aubertin-Leheudre M, Lord C, Goulet ÉDB, Khalil A, Dionne IJ. Effect of sarcopenia on cardiovascular disease risk factors in obese postmenopausal women. Obesity. 2006;14(12):2277–83. https://doi.org/10.1038/oby.2006.267.

    Article  PubMed  Google Scholar 

  7. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the Foundation for the National Institutes of Health (FNIH) Sarcopenia Project. The Journals of Gerontology: Series A. 2014;69(5):576–83. https://doi.org/10.1093/gerona/glu012.

    Article  Google Scholar 

  8. Lexell J. Evidence for nervous system degeneration with advancing age. J Nutr. 1997;127(5 Suppl):1011S–3S.

    Article  CAS  Google Scholar 

  9. Delbono O. Neural control of aging skeletal muscle. Aging Cell. 2003;2:21–9.

    Article  CAS  Google Scholar 

  10. Payne AM, Delbono O. Neurogenesis of excitation-contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev. 2004;32(1):36–40.

    Article  Google Scholar 

  11. Lexell J. Human aging, muscle mass, and fiber type composition. Journals of Gerontology Series A, Biological Sciences & Medical Sciences. 1995;50(Spec No):11–6.

  12. Larsson L, Ansved T. Effects of ageing on the motor unit. Prog Neurobiol. 1995;45(5):397–458.

    Article  CAS  Google Scholar 

  13. Larsson L. Motor units: remodeling in aged animals. Journals of Gerontology Series A, Biological Sciences & Medical Sciences. 1995;50(Spec No):91–5.

  14. Kadhiresan VA, Hassett CA, Faulkner JA. Properties of single motor units in medial gastrocnemius muscles of adult and old rats. J Physiol. 1996;493(Pt 2):543–52.

    Article  CAS  Google Scholar 

  15. Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci. 2000;20(7):2534–42.

    Article  CAS  Google Scholar 

  16. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76(2):371–423.

    Article  CAS  Google Scholar 

  17. Lefeuvre B. Crossin Fl, Fontaine-Pe’rus J, Bandman E, Gardahaut M-F. Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers. Mech Dev. 1996;58(1):115–27. https://doi.org/10.1016/S0925-4773(96)00564-3.

    Article  CAS  PubMed  Google Scholar 

  18. Gropp KE. Skeletal muscle toolbox. Toxicol Pathol. 2017;45(7):939–42. https://doi.org/10.1177/0192623317735794.

    Article  CAS  PubMed  Google Scholar 

  19. Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One. 2012;7(4):e35273. https://doi.org/10.1371/journal.pone.0035273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D, et al. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet Muscle. 2018;8(1):25. https://doi.org/10.1186/s13395-018-0171-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miazaki M, Viana MP, Yang Z, Comin CH, Wang Y, da F Costa L et al. Automated high-content morphological analysis of muscle fiber histology. Computers in Biology and Medicine 2015;63:28–35. doi: https://doi.org/10.1016/j.compbiomed.2015.04.020.

  22. Smith LR, Barton ER. SMASH–semi-automatic muscle analysis using segmentation of histology: a MATLAB application. Skelet Muscle. 2014;4(1):21.

    Article  Google Scholar 

  23. Bergmeister KD, Gröger M, Aman M, Willensdorfer A, Manzano-Szalai K, Salminger S, et al. Automated muscle fiber type population analysis with ImageJ of whole rat muscles using rapid myosin heavy chain immunohistochemistry. Muscle Nerve. 2016;54(2):292–9.

    Article  CAS  Google Scholar 

  24. Wen Y, Murach KA, Vechetti IJ Jr, Fry CS, Vickery C, Peterson CA, et al. MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. J Appl Physiol. 2018;124(1):40–51.

    Article  CAS  Google Scholar 

  25. Pertl C, Eblenkamp M, Pertl A, Pfeifer S, Wintermantel E, Lochmüller H, et al. A new web-based method for automated analysis of muscle histology. BMC Musculoskelet Disord. 2013;14(1):26. https://doi.org/10.1186/1471-2474-14-26.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Briguet A, Courdier-Fruh I, Foster M, Meier T, Magyar JP. Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul Disord. 2004;14(10):675–82. https://doi.org/10.1016/j.nmd.2004.06.008.

    Article  PubMed  Google Scholar 

  27. Lau YS, Xu L, Gao Y, Han R. Automated muscle histopathology analysis using CellProfiler. Skelet Muscle. 2018;8(1):32. https://doi.org/10.1186/s13395-018-0178-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jokl EJ, Blanco G. Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mamm Genome. 2016;27(11):525–37. https://doi.org/10.1007/s00335-016-9659-2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Purves-Smith FM, Sgarioto N, Hepple RT. Fiber typing in aging muscle. Exerc Sport Sci Rev. 2014;42(2):45–52. https://doi.org/10.1249/jes.0000000000000012.

    Article  PubMed  Google Scholar 

  30. Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018;8(3). doi:https://doi.org/10.1101/cshperspect.a029785.

  31. Hepple RT. When motor unit expansion in ageing muscle fails, atrophy ensues. J Physiol. 2018;596(9):1545–6. https://doi.org/10.1113/jp275981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. Journal of Muscle Research & Cell Motility. 1989;10(3):197–205. https://doi.org/10.1007/BF01739810.

    Article  CAS  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

    Article  CAS  Google Scholar 

  34. Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D et al. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skeletal Muscle. 2018;8(1). doi:https://doi.org/10.1186/s13395-018-0171-0.

  35. Legland D, Arganda-Carreras I, Andrey P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics. 2016;32(22):3532–4. https://doi.org/10.1093/bioinformatics/btw413.

    Article  CAS  PubMed  Google Scholar 

  36. Zack GW, Rogers WE, Latt SA. Automatic measurement of sister chromatid exchange frequency. Journal of Histochemistry & Cytochemistry. 1977;25(7):741–53. https://doi.org/10.1177/25.7.70454.

    Article  CAS  Google Scholar 

  37. Choi SJ, Files DC, Zhang T, Wang Z-M, Messi ML, Gregory H, et al. Intramyocellular lipid and impaired myofiber contraction in normal weight and obese older adults. The Journals of Gerontology: Series A. 2015;71(4):557–64. https://doi.org/10.1093/gerona/glv169.

    Article  Google Scholar 

  38. Messi ML, Li T, Wang Z-M, Marsh AP, Nicklas B, Delbono O. Resistance training enhances skeletal muscle innervation without modifying the number of satellite cells or their myofiber association in obese older adults. The Journals of Gerontology: Series A. 2015;71(10):1273–80. https://doi.org/10.1093/gerona/glv176.

    Article  Google Scholar 

  39. Smerdu V, Soukup T. Demonstration of myosin heavy chain isoforms in rat and humans: the specificity of seven available monoclonal antibodies used in immunohistochemical and immunoblotting methods. Eur J Histochem. 2008;52(3):179–90. https://doi.org/10.4081/1210.

    Article  PubMed  Google Scholar 

  40. SUN HQ, LUO YJ. Adaptive watershed segmentation of binary particle image. J Microsc. 2009;233(2):326–30. https://doi.org/10.1111/j.1365-2818.2009.03125.x.

    Article  CAS  PubMed  Google Scholar 

  41. Andersen JL, Schiaffino S. Mismatch between myosin heavy chain mRNA and protein distribution in human skeletal muscle fibers. Am J Phys Cell Phys. 1997;272(6):C1881–C9. https://doi.org/10.1152/ajpcell.1997.272.6.C1881.

    Article  CAS  Google Scholar 

  42. Murach KA, Dungan CM, Kosmac K, Voigt TB, Tourville TW, Miller MS, et al. Fiber typing human skeletal muscle with fluorescent immunohistochemistry. J Appl Physiol. 2019;127(6):1632–9. https://doi.org/10.1152/japplphysiol.00624.2019.

    Article  CAS  PubMed  Google Scholar 

  43. Medler S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. The Journal of Experimental Biology. 2019;222(23):jeb200832. doi:https://doi.org/10.1242/jeb.200832.

  44. Moreillon M, Conde Alonso S, Broskey NT, Greggio C, Besson C, Rousson V, et al. Hybrid fiber alterations in exercising seniors suggest contribution to fast-to-slow muscle fiber shift. J Cachexia Sarcopenia Muscle. 2019;10(3):687–95. https://doi.org/10.1002/jcsm.12410.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Machek SB. Mechanisms of sarcopenia: motor unit remodelling and muscle fibre type shifts with ageing. J Physiol. 2018;596(16):3467–8. https://doi.org/10.1113/jp276586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health grants R01AG057013 and R01AG057013-02S1 to Osvaldo Delbono and the Wake Forest Claude D. Pepper Older Americans Independence Center (P30-AG21332) and R01AG059732 to Aron Buchman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Delbono.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2161 kb)

ESM 2

(DOCX 40.3 kb)

ESM 3

(DOCX 19.6 kb)

ESM 4

(IJM 40.8 kb)

ESM 5

(IJM 440 b)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonilla, H.J., Messi, M.L., Sadieva, K.A. et al. Semiautomatic morphometric analysis of skeletal muscle obtained by needle biopsy in older adults. GeroScience 42, 1431–1443 (2020). https://doi.org/10.1007/s11357-020-00266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00266-1

Keywords

Navigation