Skip to main content
Log in

Hankel Transform Application for Calculation of Ring Coils Inductance. Part 2

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Changes in the geometric parameters of ring coils, which are an essential element of transducer design used for non-destructive testing of ferromagnetic metals, entail a change in the self-induction coefficient (inductance) of alternating magnetic field source. In the article, on the basis of proposed approach [1], the equations for determining the ring coils inductance are obtained, allowing to take into account real dimensions of inductors. They are equally suitable for situations where coil is located in an empty space, as well as near a conductive ferromagnetic or non-ferromagnetic metal. Calculating the inductance of ring coil located near magnetized, conductive ferromagnetic plate, we found that circuit inductance is the frequency-dependent complex-valued function vs distance between plate and ring coil. The measurements of the inductance of a coil located above a conductive ferromagnetic plate with a change in the non-contact value were carried out. The obtained results testify to physical meaningfulness and reliability of theoretical statements and calculations. These qualitative and quantitative results correspond to generally accepted energy definition of self-induction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. O. N. Petrischev, M. I. Romanyuk, G. M. Suchkov, "Hankel transform application for calculation of ring coils inductance. Part 1," Radioelectron. Commun. Syst., v.63, n.5, p.235 (2020). DOI: https://doi.org/10.3103/S0735272720050027.

    Article  Google Scholar 

  2. R. B. Thompson, "Physical principles of measurements with EMAT transducers," in Physical Acoustics (Academic Press, 1990). DOI: https://doi.org/10.1016/B978-0-12-477919-8.50010-8.

    Chapter  Google Scholar 

  3. G. M. Suchkov, A. V. Donchenko, A. V. Desyatnichenko, A. A. Kelin, E. L. Nozdracheva, "Increasing the sensitivity of EMA devices," Russ. J. Nondestruct. Test., v.44, n.2, p.86 (2008). DOI: https://doi.org/10.1134/S1061830908020022.

    Article  Google Scholar 

  4. S. Y. Plesnetsov, O. N. Petrishchev, R. P. Migushchenko, G. M. Suchkov, "Modeling of electromagnetic-acoustic conversion when excited torsional waves," Tekhnichna Elektrodynamika, v.2017, n.3, p.79 (2017). DOI: https://doi.org/10.15407/techned2017.03.079.

    Article  Google Scholar 

  5. A. G. Gorbashova, O. M. Petrischev, M. I. Romanyuk, G. M. Suchkov, S. V. Haschina, "Investigation of the transfer characteristics of ultrasonic tract with electromagnetic excitation and detection of Rayleigh waves in ferromagnet. Part 1," Electron. Commun., v.0, n.2, p.69 (2013). URI: https://elibrary.ru/item.asp?id=21446152.

    Article  Google Scholar 

  6. R. Ribichini, F. Cegla, P. B. Nagy, P. Cawley, "Study and comparison of different EMAT configurations for SH wave inspection," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, v.58, n.12, p.2571 (2011). DOI: https://doi.org/10.1109/TUFFC.2011.2120.

    Article  Google Scholar 

  7. M. Seher, P. Huthwaite, M. Lowe, P. Nagy, P. Cawley, "Numerical design optimization of an EMAT for A0 Lamb wave generation in steel plates," in AIP Conference Proceedings (American Institute of Physics Inc.). DOI: https://doi.org/10.1063/1.4864839.

    Chapter  Google Scholar 

  8. H. M. Seung, C. Il Park, Y. Y. Kim, "An omnidirectional shear-horizontal guided wave EMAT for a metallic plate," Ultrasonics, v.69, p.58 (2016). DOI: https://doi.org/10.1016/j.ultras.2016.03.011.

    Article  Google Scholar 

  9. D. Rueter, "Induction coil as a non-contacting ultrasound transmitter and detector: Modeling of magnetic fields for improving the performance," Ultrasonics, v.65, p.200 (2016). DOI: https://doi.org/10.1016/j.ultras.2015.10.003.

    Article  Google Scholar 

  10. J. Isla, F. Cegla, "Optimization of the bias magnetic field of shear wave EMATs," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, v.63, n.8, p.1148 (2016). DOI: https://doi.org/10.1109/TUFFC.2016.2558467.

    Article  Google Scholar 

  11. J. He, K. Xu, W. Ren, "Designs for improving electromagnetic acoustic transducers’ excitation performance," Japanese J. Appl. Phys., v.57, n.6, p.067202 (2018). DOI: https://doi.org/10.7567/JJAP.57.067202.

    Article  Google Scholar 

  12. P. L. Kalantarov, L. A. Zeitlin, Calculation of Inductances. Reference Book (Energoatomizdat, Leningrad, 1986).

    Google Scholar 

  13. I. E. Tamm, Fundamentals of Electricity Theory (Nauka, Moscow, 2003).

    Google Scholar 

  14. N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Partial Differential Equations of Mathematical Physics (Vyssh. Shkola, Moscow, 1970).

    MATH  Google Scholar 

  15. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (National Bureau of Standards, Gaithersburg, 1964).

    MATH  Google Scholar 

  16. V. I. Smirnov, Course of Higher Mathematics (BKhV-Peterburg, St. Petersburg, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Petrischev.

Ethics declarations

ADDITIONAL INFORMATION

O. N. Petrischev, M. I. Romanyuk, and G. M. Suchkov

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020070018 with DOI: https://doi.org/10.20535/S0021347020070018

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrischev, O.N., Romanyuk, M.I. & Suchkov, G.M. Hankel Transform Application for Calculation of Ring Coils Inductance. Part 2. Radioelectron.Commun.Syst. 63, 329–342 (2020). https://doi.org/10.3103/S0735272720070018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720070018

Navigation