Skip to main content
Log in

Modeling of Nuclear Reactions with Langevin Calculations

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The mass angle distribution shows a strong correlation between mass and angle when quasifission events are dominant. Therefore, as long as quasifission events are dominant, the mass angle distribution is characterized in that diagonal correlation appears. This diagonal correlation could not be reproduced in our previous model that is before introducing \({{f}_{{{\text{ina}}}}}\) and \(\gamma _{t}^{0}\) model parameters. In this study, we clarify the indeterminate parameters included in the model to reproduce the diagonal correlation appearing in the mass angle distribution in the 48Ti + 186W reaction system. As a result, \({{f}_{{{\text{ina}}}}}\) and \(\gamma _{t}^{0}\) of model parameters found to be key parameters for MAD. it was also found that the balance between \({{f}_{{{\text{ina}}}}}\) and \(\gamma _{t}^{0}\) parameters values is important for the strong correlation between mass and angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zagrebaev, V.I. and Greiner, W., Phys. Rev., Lett., 2008, vol. 101, 122701.

    Article  ADS  Google Scholar 

  2. Karpov, A.V. and Saiko, V.V., Phys. Rev. C, 2017, vol. 96, 024618.

    Article  ADS  Google Scholar 

  3. Zagrebaev, V.I., Oganessian, Yu.Ts., Itkis, M.G., and Greiner, W., Phys. Rev. C: Nucl. Phys., 2008, vol. 73, 122701.

    Google Scholar 

  4. du Riez, R., Williams, E., Hinde, D.J., Dasgupta, M., Evers, M., Lin, C.J., Luong, D.H., Simenel, C., and Wakhle, A., Phys. Rev. C: Nucl. Phys., 2013, vol. 88, 054618.

    Article  ADS  Google Scholar 

  5. Zagrebaev, V.I. and Greiner, W., J. Phys. G: Nucl. Part. Phys., 2005, vol. 31, p. 825.

    Article  ADS  Google Scholar 

  6. Zagrebaev, V.I. and Greiner, W., 2007, vol. 34, p. 2265.

  7. Zagrebaev, V.I., Karpov, A.V., Aritomo, Y., Naumenko, M.A., and Greiner, W. Phys. Part. Nucl., 2007, vol. 38, p. 469.

    Article  Google Scholar 

  8. Bertsch, G.F., Z. Phys. A, 1978, vol. 289, p. 103.

    Article  ADS  Google Scholar 

  9. Cassind, W. and Nörenberg, W., Nucl. Phys. A, 1983, vol. 401, p. 467.

    Article  ADS  Google Scholar 

  10. Diaz-Torres, A., Phys. Rev. C: Nucl. Phys., 2004, vol. 69, 021603.

    Article  ADS  Google Scholar 

  11. Maruhn, J. and Greiner, W., Z. Phys., 1972, vol. 251, p. 431.

    Article  ADS  Google Scholar 

  12. Sato, K., Iwamoto, A., Harada, K., Yamaji, S., and Yoshida, S., Z. Phys. A, 1978, vol. 288, p. 383.

    Article  ADS  Google Scholar 

  13. Aritomo, Y. and Ohta, M., Nucl. Phys. A, 2004, vol. 744, p. 3.

    Article  ADS  Google Scholar 

  14. Aritomo, Y., Phys. Rev. C: Nucl. Phys., 2009, vol. 80, 064604.

    Article  ADS  Google Scholar 

  15. Blocki, J., Boneh, Y., Nix, J.R., Randrup, J., Robel, M., Sierk, A.J., and Swiatecki, W.J., Ann. Phys., 1978, vol. 113, p. 330.

    Article  ADS  Google Scholar 

  16. Nix, J.R. and Sierk, A.J., Nucl. Phys. A, 1984, vol. 428, p. 161.

    Article  ADS  Google Scholar 

  17. Randrup, J. and Swiatecki, W.J., Nucl. Phys. A, 1984, vol. 429, p. 105.

    Article  ADS  Google Scholar 

  18. Feldmeier, H., Rep. Prog. Phys., 1987, vol. 50, p. 915.

    Article  ADS  Google Scholar 

  19. Carjan, N., Sierk, A.J., and Nix, J.R., Nucl. Phys. A, 1986, vol. 452, p. 381.

    Article  ADS  Google Scholar 

  20. Carjan, N., Wada, T., and Abe, Y., in Towards a Unified Picture of Nuclear Dynamics, AIP Conf. Proc., no. 250, New York: AIP, 1992.

    Google Scholar 

  21. Wada, T., Abe, Y., and Carjan, N., Phys. Rev, Lett., 1993, vol. 70, p. 3538.

    Article  ADS  Google Scholar 

  22. Asano, T., Wada, T., Ohta, M., Yamaji, S., and Nakahara, H., J. Nucl. Radiochem. Sci., 2006, vol. 7, p. 7.

    Article  Google Scholar 

  23. Davies, K.T.R., Sierk, A.J., and Nix, J.R., Phys. Rev. C: Nucl. Phys., 1976, vol. 13, p. 2385.

    Article  ADS  Google Scholar 

  24. Aritomo, Y., Nucl. Phys. A, 2006, vol. 780, p. 222.

    Article  ADS  Google Scholar 

  25. Ignatyuk, A.N., Smirenkin, G.N., and Tishin, A.S., Sov. J. Nucl. Phys., 1975, vol. 21, p. 255.

    Google Scholar 

  26. Krappe, H.J., Nix, J.R., and Sierk, A.J., Phys. Rev. C: Nucl. Phys., 1979, vol. 20, p. 992.

    Article  ADS  Google Scholar 

  27. Aritomo, Y., Chiba, S., and Nishio, K., Phys. Rev. C: Nucl. Phys., 2011, vol. 84, 024602.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amano.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amano, S., Aritomo, Y., Miyamoto, Y. et al. Modeling of Nuclear Reactions with Langevin Calculations. Bull. Russ. Acad. Sci. Phys. 84, 1034–1038 (2020). https://doi.org/10.3103/S1062873820080067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820080067

Navigation