Skip to main content
Log in

Theoretical Study of Proton Radioactivity

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The unified fission model with a Modified-Woods–Saxon (MWS) nuclear potential is used to study the proton decay of spherical proton emitters from the ground and isomeric states in the framework of WKB approximation. The results of our calculations are compared to those obtained by other theoretical models as well as experimental data. It is shown that the unified fission model with the MWS nuclear potential can be successfully used to evaluate the proton decay half-lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Goldanskii, V., Nucl. Phys., 1960, vol. 19, p. 482.

    Article  Google Scholar 

  2. Jackson, K.P., Cardinal, C.U., Evans, H.C., Jelley, N.A., and Cerny, J., Phys. Lett. B, 1970, vol. 33, p. 281.

    Article  ADS  Google Scholar 

  3. Hofmann, S., Faust, W., Münzenberg, G., Reisdorf, W., Armbruster, P., Güttner, K., and Ewald, H., Z. Phys. A, 1979, vol. 291, p. 53.

    Article  ADS  Google Scholar 

  4. Hofmann, S., Reisdorf, W., Münzenberg, G., Hessberger, F.P., Schneider, J.R.H., and Armbruster, P., Z. Phys. A, 1982, vol. 305, p. 111.

    ADS  Google Scholar 

  5. Klepper, O., Batsch, T., Hofmann, S., Kirchner, R., Kurcewicz, W., Reisdorf, W., Roeckl, E., Schardt, D., and Nyman, G., Z. Phys. A, 1982, vol. 305, p. 125.

    Article  ADS  Google Scholar 

  6. Yibin Qian and Zhongzhou Ren, Eur. Phys. J. A, 2016, vol. 52, p. 68.

    Article  ADS  Google Scholar 

  7. Wang, Y.Z., Cui, J.P., Zhang, Y.L., Zhang, S., and Gu, J.Z., Phys. Rev. C, 2017, vol. 95, 014302.

    Article  ADS  Google Scholar 

  8. Saidi, F., Oudih, M.R., Fellah, M., and Allal, N.H., Mod. Phys. Lett. A, 2015, vol. 30, 1550150.

    Article  ADS  Google Scholar 

  9. Ouhachi, M., Oudih, M.R., Fellah, M., and Allal, N.H., Int. J. Mod. Phys. E, 2018, vol. 27, 1850059.

    Article  ADS  Google Scholar 

  10. Ouhachi, M., Oudih, M.R., Fellah, M., and Allal, N.H., Chin. J. Phys., 2018, vol. 56, p. 574.

    Article  Google Scholar 

  11. Ouhachi, M., Oudih, M.R., Fellah, M., and Allal, N.H., AIP Conf. Proc., 2018, vol. 1994, 020011.

    Article  Google Scholar 

  12. Saidi, F., Oudih, M.R., Fellah, M., and Allal, N.H., AIP Conf. Proc., 2018, vol. 1994, 020012.

    Article  Google Scholar 

  13. Delion, D.S., Liotta, R.J., and Wyss, R., Phys. Rep., 2006, vol. 424, p. 113.

    Article  ADS  Google Scholar 

  14. Delion, D.S., Liotta, R.J., and Wyss, R., Phys. Rev. Lett., 2006, vol. 96, 072501.

    Article  ADS  Google Scholar 

  15. Bugrov, V.P. and Kadmenskii, S.G., Sov. J. Nucl. Phys. (Engl. Transl.), 1989, vol. 49, p. 967.

  16. Zhang, H.F., Wang, Y.J., Dong, J.M., Li, J.Q., and Scheid, W., J. Phys. G: Nucl. Part. Phys., 2010, vol. 37, 085107.

    Article  ADS  Google Scholar 

  17. Madhubrata Bhattacharya and Gangopadhyay, G., Phys. Lett. B, 2007, vol. 651, p. 263.

    Article  ADS  Google Scholar 

  18. Bidhubhusan Sahu, Agarwalla, S.K., and Patra, S.K., Phys. Rev. C: Nucl. Phys., 2011, vol. 84, 054604.

    Article  ADS  Google Scholar 

  19. Santhosh, K.P. and Sukumaran, I., Phys. Rev. C, 2017, vol. 96, 034619.

    Article  ADS  Google Scholar 

  20. Nilsson, S.G., Mat.-Fys. Medd.—K. Dan. Vidensk. Selsk., 1955, vol. 29, p. 1.

    Google Scholar 

  21. Wang, N., Zhao, K., Scheid, W., and Wu, X., Phys. Rev. C: Nucl. Phys., 2008, vol. 77, 014603.

    Article  Google Scholar 

  22. Wang, N. and Scheid, W., Phys. Rev. C: Nucl. Phys., 2008, vol. 78, 014607.

    Article  Google Scholar 

  23. Mohr, P.J., Newell, D.B., and Taylor, B.N., Rev. Mod. Phys., 2016, vol. 88, 035009.

    Article  ADS  Google Scholar 

  24. Dobrowolski, A., K. Pomorski, K., Bartel, J., Nucl. Phys. A, 2003, vol. 729, p. 713.

    Article  ADS  Google Scholar 

  25. Pahlavani, M.R., Alavi, S.A., and Tahanipour, N., Mod. Phys. Lett. A, 2013, vol. 28, 1350065.

    Article  ADS  Google Scholar 

  26. Zdeb, A., Warda, M., Petrache, C.M., and Pomorski, K., Eur. Phys. J. A, 2016, vol. 52, p. 323.

    Article  ADS  Google Scholar 

  27. Hatsukawa, Y., Nakahara, H., and Hoffman, D.C., Phys. Rev. C: Nucl. Phys., 1990, vol. 42, p. 674.

    Article  ADS  Google Scholar 

  28. Blank, B. and Borge, M.J.G., Prog. Part. Nucl. Phys., 2008, vol. 60, p. 403.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Oudih.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oudih, M.R., Fellah, M. & Allal, N.H. Theoretical Study of Proton Radioactivity. Bull. Russ. Acad. Sci. Phys. 84, 1022–1026 (2020). https://doi.org/10.3103/S1062873820080237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820080237

Navigation