Skip to main content
Log in

Cylindrical Waveguiding Structures with Complex Cross Sections in Microwave Units of Modern Information and Communication Systems

  • REVIEW
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Cylindrical waveguiding structures with complex transverse cross sections and application of the structures in modern information and communication systems are reviewed. History of and prospects for development of such microwave elements are considered, and methods for electrodynamic analysis are analyzed. Applications of complex cylindrical waveguide and coaxial structures as basic elements in the systems for generation of signals, radio communications, radars, and sounding are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. I. V. Lebedev, Microwave Technology and Devices (Vysshaya Shkola, Moscow, 1970), Vol. 1 [in Russian].

    Google Scholar 

  2. J. Pierre and J. Benea, Advanced Design Techniques and Realizations of Microwave and RF Filters Hoboken (Wiley, New Jersey, 2008).

    Google Scholar 

  3. C. George, Techn. J. 29, 295 (1950).

    Google Scholar 

  4. W. Sun and C. A. Balanis, IEEE Trans. Microwave Theory Tech. 42, 2201 (1994).

    Article  Google Scholar 

  5. Yu. Rong and K. A. Zaki, IEEE Trans. Microwave Theory Tech. 48, 258 (2000).

    Article  Google Scholar 

  6. Balaji Uma, “Field theory analysis and design of circular waveguide components.” Ph. D. Dissertation (Univ. Victoria, Canada, 1997).

  7. A. J. Sangster and J. Grant, PIER Lett. 9, 75 (2009).

    Article  Google Scholar 

  8. Qiu. Dai, D. M. Klymyshyn, and P. Pramanick, Int. J. RF and Microwave Comp.-Aided Eng. 12, 190 (2002).

  9. D. S. Gubsky, V. V. Zemlyakov, and D. V. Lonkina, J. Commun. Technol. Electron. 64, 20 (2019).

    Article  Google Scholar 

  10. S. J. Skinner and G. L. James, IEEE Trans. Microwave Theory Tech. 39, 294 (1991).

    Article  Google Scholar 

  11. J. Liu and G. Lin, PIER M 17, 113 (2011).

    Article  Google Scholar 

  12. D. S. Gubsky, D. V. Lonkina, V. V. Zemlyakov, and V. L. Zemlyakov, in Proc. Int. Conf. on Actual Problems of Electron Devices Engineering (APEDE-2018), Saratov, Sept. 27–28, 2018 (APEDE, 2018), p. 255.

  13. D. S. Gubsky, D. V. Lonkina, V. V. Zemlyakov, and V. L. Zemlyakov, in Proc. Conf. XIV Int. Sci.-Techn. Conf. on Actual Problems of Electron. Instrument Engineering (APEIE–2018), Novosibirsk, Oct. 2–6,2018 (APEIE, 2018), p. 92.

  14. R. S. Elliott, IEEE Trans. Antennas Propag. 16, 282 (1968).

    Article  Google Scholar 

  15. A. M. Lerer, Izv. Vyssh. Uchebn. Zaved. Radioelektron. 17, 90 (1974).

    Google Scholar 

  16. G. G. Mazumder and P. K. Saha, IEEE Trans. Microwave Theory Tech. 35, 201 (1987).

    Article  Google Scholar 

  17. U. Balaji and R. Vahldieck, IEEE Trans. Microwave Theory Tech. 44, 1183 (1996).

    Article  Google Scholar 

  18. K. Singh, P. K. Jain, and B. N. Basu, PIER 47, 297 (2004).

    Article  Google Scholar 

  19. Guojian Li, Yinqin Cheng, and Aning Ma, in Proc. Conf. Progress in Electromagnetic Research Symp. (PIERS-2016), Shanghai, Aug. 8–11,2016 (PIERS, 2016), p. 1170.

  20. Jun Liu and Gao Lin, Engineering Analysis with Boundary Elements 36, 1721 (2012).

    Article  MathSciNet  Google Scholar 

  21. P. Daly, IEEE Trans. Microwave Theory Tech. 22, 202 (1974).

    Article  Google Scholar 

  22. Jian-Ming Jin, The Finite Element Method in Electromagnetics, 3rd ed. Hoboken, (Wiley, New Jersey, 2015).

  23. P. Aryan, A. Kotousov, C. T. Ng, and B. Cazzolato, Structural Control Health Monitoring 24 (3), e1884 (2017).

    Article  Google Scholar 

  24. R. Soleimanpour and C. T. Ng, Structural Control Health Monitoring 16, 400 (2017).

    Article  Google Scholar 

  25. Mohamed Yahia1, Jun W. Tao, and Hedi Sakli, PIER Lett. 51, 101 (2015).

  26. Peng Li, Jun Liu, Gao Lin et al., Int. J. Numerical Modelling: Electronic Networks, Devices and Fields 203 (2), E2182 (2016).

    Google Scholar 

  27. J. B. Davies and C. A. Muilwyk, Proc. IEEE 113, 277 (1966).

    Google Scholar 

  28. Feng Xu, Yulin Zhang, Wei Hong et al., IEEE Trans. Microwave Theory Tech. 51, 2221 (2003).

    Article  Google Scholar 

  29. M. J. Beaubien and A. Wexler, IEEE Trans. Microwave Theory Tech. 16 (2), 1007 (1968).

    Article  Google Scholar 

  30. A. Fanti, G. Montisci, G. Mazzarella, and G. A. Casula, Appl. Comp. Electromagn. Soc. J. 28, 1100 (2013).

    Google Scholar 

  31. G. Fontgalland, A. Najid, and M. Guglielmi, in Linking to the Next Century (Proc. 1997 SBMO/IEEE MTT-S Int. Microwave and Optoelectron. Conf., Natal, Brazil, Aug. 11–14,1997), (IEEE, New York, 1997), p. 170.

  32. Song Chongmin and J. P. Wolf, Int. J. Numerical Methods in Engineering 45 (2), 1403 (1999).

    Article  Google Scholar 

  33. J. Liu and G. Lin, PIER M 17, 113 (2011).

    Article  Google Scholar 

  34. V. F. Kravchenko and M. A. Basarab, Boolean Algebra and Methods of Approximation in Boundary-Value Problems of Electrodynamics, Ed. by V. F. Kravchenko (Fizmatlit, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  35. G. F. Zargano, A. M. Lerer, V. P. Lyapin, and G. P. Sinyavskii, Transmission Lines with Complicated Cross Sections (Rostov. Gos. Univ., Rostov-on-Don, 1983).

    Google Scholar 

  36. D. S. Gubskii, V. V. Zemlyakov, and D. V. Lonkina, Fiz. Voln. Prots. & Radiotekhn. Sist. 29 (4), 11 (2017).

    Google Scholar 

  37. D. S. Gubsky, V. V. Zemlyakov, and D. V. Lonkina, Radiophys. Quantum El. 61, 362 (2018).

    Article  Google Scholar 

  38. D. V. Lonkina, V. V. Zemlyakov, and D. S. Gubskii, Infokomm. & Radioelektron. Tekhnol. 2 (2), 154 (2019).

    Google Scholar 

  39. D. S. Gubskii and G. P. Sinyavskii, Fiz. Osn. Priborostroen. 1 (1), 51 (2012).

    Google Scholar 

  40. E. E. Malov and Yu. E. Mitel’man, in Thes. 2nd Int. Conf. Students, Postgraduate and Young Scientists “Information Technologies, Telecommunications and Control Systems.” Yekaterinburg, Dec. 14–15, 2015, p. 200.

  41. V. V. Biryukov, Antenny, No. 4, 62 (2016).

  42. N. A. Novoselova, S. B. Raevskii, and A. A. Titarenko, Tr. NGTU im. R.E. Alekseeva, No. 2, 30 (2010).

    Google Scholar 

  43. D. V. Valovik and E. Yu. Smol’kin, J. Commun. Technol. Electron. 58, 762 (2013).

    Article  Google Scholar 

  44. S. B. Raevskii and A. A. Titarenko, J. Commun. Technol. Electron. 54, 1215 (2009).

    Article  Google Scholar 

  45. S. A. Manenkov, T-Comm: Telekomm. & Transport 11 (5), 45 (2017).

    Google Scholar 

  46. G. S. Malyshev, S. B. Raevskii, A. Yu. Sedakov, and A. A. Titarenko, Antenny, No. 1, 61 (2017).

    Google Scholar 

  47. A. Wexler, IEEE Trans. Microwave Theory Tech. 15, 508 (1967).

    Article  Google Scholar 

  48. U. Balaji and R. Vahldieck, IEEE Trans. Microwave Theory Tech. 46, 191 (1998).

    Article  Google Scholar 

  49. Yun Tao, Zhongxiang Shen, and Gang Liu, IEEE Trans. Mag. 45, 1076 (2009).

    Article  Google Scholar 

  50. S. Amari, S. Catreux, R. Vahldieck, and J. Bornemann, IEEE Trans. Microwave Theory Tech. 46, 479 (1998).

    Article  Google Scholar 

  51. Seng Yong Yu and J. Bornemann, in Proc. Conf. IEEE Pacific Rim Conf. on Communications, Computers and Signal Processing, Victoria, Aug. 23 ̶26, 2011 (IEEE, New York, 2011), p. 504.

  52. Seng Yong Yu and J. Bornemann, in Proc. German Microwave Conf. Munich, Mar. 16–18,2009 (IEEE, New York, 2009), p. 4815880.

  53. Chong Zhang, Junhong Wang, Meie Chen, and Zhan Zhang, in Proc. Cross Strait Quad-Regional Radio Science and Wireless Technol. Conf., Harbin, July 27–30,2011, p. 479.

  54. V. L. Handamirov and D. A. Sergeev, Nauka i Obrazov. MGTU im. N. E. Baumana, No. 5, 66 (2016).

    Google Scholar 

  55. N. N. Qaddoumi, M. Abou-Khousa, and W. M. Saleh, IEEE Trans. IAM-55 (5), 1752 (2006).

    Google Scholar 

  56. R. Zoughi, Microwave Non-Destructive Testing and Evaluation. Dordrecht: Chapman and Hall (2000).

  57. N. Qaddoumi, “Microwave detection and characterization of subsurface defect properties in composites using open ended rectangular waveguide,” Ph. D. Dissertation, (Dept. Elect. Comput. Eng. Colorado State Univ. Fort Collins, 1998).

  58. O. Malyuskin and V. F. Fusco, IEEE Trans. Instrum. Meas. 65, 189 (2016).

    Article  Google Scholar 

  59. M. R. Ramzi, M. Abou-Khousa, and I. Prayudi, IEEE Sensors J. 17, 2359 (2017).

    Article  Google Scholar 

  60. M. A. Abou-Khousa, M. S. U. Rahman, and X. Xingyu, IEEE Sensors J. 19, 1767 (2019).

    Article  Google Scholar 

  61. H. J. Kim, H. G. Roh, and W. Lee, J. Korean Neurosurgical Soc. 59 (3), 219 (2016).

    Article  Google Scholar 

  62. P. Mathur, D. G. Kurup, and R. Augustine, in Proc. Conf. First IEEE MTT-S Int. Microwave Bio Conf. (IMBIOC-2017). Gothenburg., May 15–17, 2017 (IEEE, New York, 2017), p. 1.

  63. J. S. Hyde, J. W. Sidabras, and R. R. Mett, Cell Biochem. Biophys. 77 (1), 3 (2019).

    Article  Google Scholar 

  64. E. Musonda and I. C. Hunter, IEEE Trans. Microwave Theory Tech. 63, 954 (2015).

    Article  Google Scholar 

  65. K. Saurav, D. Sarkar, and K. V. Srivastava, IEEE Antennas and Wireless Propagation Lett. 13, 852 (2014).

    Article  Google Scholar 

  66. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, Microwave and Optical Technol. Lett. 55, 2131 (2013).

    Article  Google Scholar 

  67. Zhaoyun Duan, Chen Guo, and Min Chen, Opt. Express. 19 15), 13825 (2011).

  68. Xin Wang, Zhaoyun Duan, Xirui Zhan et al., IEEE Trans. Microwave Theory Tech. 67, 2238 (2019).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-37-90013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zemlyakov.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lonkina, D.V., Gubskii, D.S. & Zemlyakov, V.V. Cylindrical Waveguiding Structures with Complex Cross Sections in Microwave Units of Modern Information and Communication Systems. J. Commun. Technol. Electron. 65, 967–981 (2020). https://doi.org/10.1134/S1064226920090053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920090053

Navigation