Skip to main content
Log in

Window Functions with a Quasi-Rectangular Spectrum

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The discrete Fourier transform (DFT) is carried out on a bounded time interval, which is equivalent to multiplying a signal under analysis by a rectangular window whose spectrum has the largest (among the other windows) side lobes. As a result, the effect called spectral leakage occurs. Multiplying the signal by the smoothing window reduces the splatter of its spectral components. There are several dozen variants of window functions as the DFT is used in a variety of problems. Of particular interest is the unique flat-top window, which is employed in broadband applications. In this study, we propose a new adjustable window with a quasi-rectangular spectrum and a method to reduce the level of the spectrum’s side lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. P. Dvorkovich and A. V. Dvorkovich, Window Functions for Harmonic Analysis of Signals (Tekhnosfera, Moscow, 2016) [in Russian].

    MATH  Google Scholar 

  2. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatlit, Moscow, 1963; Academic, New York, 1980).

  3. V. I. Smirnov, Course of Higher Mathematics (BKhV-Peterburg, St. Petersburg, 2010; Addison-Wesley, Reading, Mass., 1964), Vol. 3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Lerner.

Additional information

Translated by Yu. Kornienko

Appendices

Hereinafter, the listing format of the programs is preserved.

APPENDIX A

Hereinafter, the listing format of the programs is preserved.

The Roots of Generalized Laguerre Polynomial \(L_{N}^{{\left( {\frac{1}{2}} \right)}}\left( {{{t}^{2}}} \right)\)

laguerreL(3,0.5,t^2)/laguerreL(3,0.5,0) = –0.0761905t^6 + 0.8 t^4 – 2. t^2 + 1

\({{r}_{{1,2}}}\) = ±0.816288, \({{r}_{{3,4}}}\) = ±1.67355, \({{r}_{{5,6}}}\) = ±2.65196

laguerreL(4,0.5,t^2)/laguerreL(4,0.5,0) = 1/945(16. t^8 – 288. t^6 + 1512. t^4 – 2520.      t^2 + 945)

\({{r}_{{1,2}}}\) = ±0.723551, \({{r}_{{3,4}}}\) = ±1.46855, \({{r}_{{5,6}}} = \) ±2.26658, \({{r}_{{7,8}}}\) = ±3.19099

laguerreL(5,0.5,t^2)/laguerreL(5,0.5,0) = –0.0030784 t^10 + 0.0846561 t^8 – 0.761905     t^6 + 2.66667 t^4 – 3.33333 t^2 + 1

\({{r}_{{1,2}}}\) = ±0.65681,    \({{r}_{{3,4}}}\) = ±1.32656,    \({{r}_{{5,6}}}\) = ±2.02595,    \({{r}_{{7,8}}}\) = ±2.78329,    \({{r}_{{9,10}}}\) = ±3.66847

laguerreL(6,0.5,t^2)/laguerreL(6,0.5,0)= 0.0004736 t^12 – 0.0184704 t^10 + 0.253968      t^8 – 1.52381 t^6 + 4. t^4 – 4. t^2 + 1

\({{r}_{{1,2}}}\) = ±0.605764,    \({{r}_{{3,4}}}\) = ±1.22006,    \({{r}_{{5,6}}}\) = ±1.85311,    \({{r}_{{7,8}}}\) = ±2.51974,     \({{r}_{{9,10}}}\) = ±3.24661, \({{r}_{{11,12}}}\) = ±4.10134

laguerreL(7,0.5,t^2)/laguerreL(7,0.5,0) = –0.0000631467 t^14 + 0.0033152 t^12 –      0.0646465 t^10 + 0.592593 t^8 – 2.66667 t^6 + 5.6 t^4 – 4.66667 t^2 + 1

\({{r}_{{1,2}}}\) = ±0.56507, \({{r}_{{3,4}}}\) = ±1.13612, \(~{{r}_{{5,6}}}\) = ±1.71999, \({{r}_{{7,8}}}\) = ±2.32573,     \({{r}_{{9,10}}}\) = ±2.96717, \({{r}_{{11,12}}}\) = ±3.66995, \({{r}_{{13,14}}}\) = ±4.49999

laguerreL(8,0.5,t^2)/laguerreL(8,0.5,0) = 1/135 (0.00100292 t^16 – 0.0681985 t^14 +    1.79021 t^12 – 23.2727 t^10 + 160. t^8 – 576. t^6 + 1008. t^4 – 720. t^2 + 135)

\({{r}_{{1,2}}}\) = ±0.531633, \({{r}_{{3,4}}}\) = ±1.06765, \(~{{r}_{{5,6}}}\) = ±1.61292, \({{r}_{{7,8}}}\) = ±2.1735,     \({{r}_{{9,10}}}\) = ±2.75776, \({{r}_{{11,12}}}\) = ±3.37893, \({{r}_{{13,14}}}\) = ±4.06195, \({{r}_{{15,16}}}\) = ±4.87135

laguerreL(9,0.5,t^2)/laguerreL(9,0.5,0) = –7.82003 × 10^–7 t^18 + 0.0000668612 t^16 –      0.00227328 t^14 + 0.0397824 t^12 – 0.387879 t^10 + 2.13333 t^8 – 6.4 t^6 + 9.6 t^4 –      6. t^2 + 1

\({{r}_{{1,2}}}\) = ±0.50352, \({{r}_{{3,4}}}\) = ±1.01037, \({{r}_{{5,6}}}\) = ±1.52417, \({{r}_{{7,8}}}\) = ±2.04923,    \({{r}_{{9,10}}}\) = ±2.59113, \({{r}_{{11,12}}}\) = ±3.15785, \({{r}_{{13,14}}}\) = ±3.76219, \({{r}_{{15,16}}}\) = ±4.42853,    \({{r}_{{17,18}}}\) = ±5.22027

laguerreL(10,0.5,t^2)/laguerreL(10,0.5,0) = (0.000258061 t^20 – 0.0270964 t^18 +    1.15837 t^16 – 26.2564 t^14 + 344.615 t^12 – 2688. t^10 + 12320. t^8 – 31680. t^6 +    41580. t^4 – 23100. t^2 + 3465)/3465

\({{r}_{{1,2}}}\) = ±0.479451, \({{r}_{{3,4}}}\) = ±0.9615, \(~{{r}_{{5,6}}}\) = ±1.44893, \({{r}_{{7,8}}}\) = ±1.94496,     \({{r}_{{9,10}}}\) = ±2.45355, \({{r}_{{11,12}}}\) = ±2.97999, \({{r}_{{13,14}}}\) = ±3.53197, \({{r}_{{15,16}}}\) = ±4.122,    \({{r}_{{17,18}}}\) = ±4.77399, \({{r}_{{19,20}}}\) = ± 5.55035

laguerreL(11,0.5,t^2)/laguerreL(11,0.5,0) = –6.47621 × 10^–9 t^22 + 8.19241 × 10^–7      t^20 – 0.0000430102 t^18 + 0.00122579 t^16 – 0.0208384 t^14 + 0.218803 t^12 –    1.42222 t^10 + 5.5873 t^8 – 12.5714 t^6 + 14.6667 t^4 – 7.33333 t^2 + 1

\({{r}_{{1,2}}}\) = ±0.458538, \({{r}_{{3,4}}}\) = ±0.919151, \({{r}_{{5,6}}}\) = ±1.38404, \({{r}_{{7,8}}}\) = ±1.85568,    \({{r}_{{9,10}}}\) = ±2.33702, \({{r}_{{11,12}}}\) = ±2.8318, \({{r}_{{13,14}}}\) = ±3.34513, \({{r}_{{15,16}}}\) = ±3.88447,    \({{r}_{{17,18}}}\) = ±4.46209, \({{r}_{{19,20}}}\) = ±5.10153, \({{r}_{{21,22}}}\) = ±5.86431

laguerreL(12,0.5,t^2)/laguerreL(12,0.5,0) = (2.12161 × 10^ – 6 t^24 – 0.000318241 t^22    + 0.0201288 t^20 – 0.704506 t^18 + 15.0588 t^16 – 204.8 t^14 + 1792. t^12 – 9984.     t^10 + 34320. t^8 – 68640. t^6 + 72072. t^4 – 32760. t^2 + 4095)/4095

\({{r}_{{1,2}}}\) = ±0.440147, \({{r}_{{3,4}}}\) = ±0.881983, \({{r}_{{5,6}}}\) = ±1.32728, \({{r}_{{7,8}}}\) = ±1.778,    \({{r}_{{9,10}}}\) = ±2.23642, \({{r}_{{11,12}}}\) = ±2.70532, \({{r}_{{13,14}}}\) = ±3.18829, \({{r}_{{15,16}}}\) = ±3.69028,

\({{r}_{{17,18}}}\) = ±4.21861, \({{r}_{{19,20}}}\) = ±4.78532, \({{r}_{{21,22}}}\) = ±5.41364, \({{r}_{{23,24}}}\) = ±6.16427

APPENDIX B

Programs (Matlab 6.5)

1. Spectra G(w) (see Fig. 1).

syms w G;

figure(1)

hold on

for k = 1:6

G(k,:) = taylor(exp(w.^2/4),12*(k – 1) + 1)*exp(–w.^2/4);

ezplot(G(k,:),0,14)

end

grid on

w = 0:0.01:14;

G = (1 + 1/4*w.^2 + 1/32*w.^4 + 1/384*w.^6).*exp(–w.^2/4);

plot(w,G)

grid on

xlabel('w')

ylabel('G ( w )')

title('W i n d o w s G (N = 0) a n d G T (N = 3, 6, 12, 18, 24, 30')

\(2.~~{\text{The computation of}}~~{{w}_{1}}~~{\text{ for }}~~{{a}_{1}} = {1 \mathord{\left/ {\vphantom {1 {\sqrt 2 }}} \right. \kern-0em} {\sqrt 2 }}\).

syms w G;

G = taylor(exp(w^2/4),13)*exp(–w^2/4);

solve(G–1/(2^0.5),w)

solve is an operator for solving the algebraic equation (G – \({1 \mathord{\left/ {\vphantom {1 {\sqrt 2 }}} \right. \kern-0em} {\sqrt 2 }}\) = 0)

3. The logarithm of the modulus of normalized function g(t) (N = 9)\({{\log }_{{10}}}\left| {{{g\left( t \right)} \mathord{\left/ {\vphantom {{g\left( t \right)} {g\left( 0 \right)}}} \right. \kern-0em} {g\left( 0 \right)}}} \right|~\).

Fs =1024;

t = –5.22027:1/Fs: 5.22027;

g = exp(–t.^2).*(–7.82003*10^–7* t.^18 + 0.0000668612* t.^16 – 0.00227328* t.^14 + 0.0397824* t.^12 – 0.387879* t.^10 + 2.13333* t.^8 – 6.4* t.^6 + 9.6* t.^4 – 6* t.^2 + 1);

plot(t,log10(abs(g)));

title('W i n d o w G T (N = 9 ) i n T i m e D o m a i n (L o g S c a l e' ))

xlabel('T i m e ( t )')

ylabel('abs(g (t ))');

4. The spectrum of function g(t) (N = 5) for various interval lengths.

Fs = 1024;

t1 = –1.32656: 1/Fs: 1.32656;

t2 = –2.02595: 1/Fs: 2.02595;

t3 = –2.78329: 1/Fs: 2.78329;

t4 = –3.66847: 1/Fs: 3.66847;

g1 = exp(–t1.^2).*(–0.0030784 *t1.^10 + 0.0846561* t1.^8 – 0.761905* t1.^6 + 2.66667* t1.^4 – 3.33333* t1.^2 + 1);

g2 = exp(–t2.^2).*(–0.0030784 *t2.^10 + 0.0846561* t2.^8 – 0.761905* t2.^6 + 2.66667* t2.^4 – 3.33333* t2.^2 + 1);

g3 = exp(–t3.^2).*(–0.0030784 *t3.^10 + 0.0846561* t3.^8 – 0.761905* t3.^6 + 2.66667* t3.^4 – 3.33333* t3.^2 + 1);

g4 = exp(–t4.^2).*(–0.0030784 *t4.^10 + 0.0846561* t4.^8 – 0.761905* t4.^6 + 2.66667* t4.^4 – 3.33333* t4.^2 + 1);

n = 131072;

F1 = fft(g1,n);

F2 = fft(g2,n);

F3 = fft(g3,n);

F4 = fft(g4,n);

f = Fs*(0:(n/2))/n;

P1 = 20*log10(abs(F1/F1(1)));

P2 = 20*log10(abs(F2/F2(1)));

P3 = 20*log10(abs(F3/F3(1)));

P4 = 20*log10(abs(F4/F4(1)));

plot(f,P1(1:n/2 + 1),f,P2(1:n/2 + 1), f,P3(1:n/2 + 1),f,P4(1:n/2 + 1)),grid

title('W i n d o w s G T (N = 5) i n F r e q u e n c y D o m a i n')

xlabel('F r e q u e n c y ( f )')

ylabel('G (f ), d B');

5. The GT window functions (N = 3, N = 6, and N = 12) (see Fig. 4, curves 13) and their respective spectra (see Fig. 5).

Fs = 1024;

x = –0.5:1/Fs:0.5;

u = exp(–(x*5.3039).^2).*(–1696.38* x.^6 + 633.146* x.^4 – 56.2648 *x.^2 + 1);

u1 = exp(–(x*2.51974*2).^2).*(1 – 101.585* x.^2 + 2579.9* x.^4 – 24960* x.^6 + 105649* x.^8 – 195134* x.^10 + 127069* x.^12);

u2 = exp(–(x*2.70532*2).^2).*(2.05295*10^8* x.^24 – 1.0519*10^9 *x.^22 + 2.27267*10^9* x.^20 – 2.71711*10^9 *x.^18 + 1.98388*10^9 *x.^16 – 9.21631*10^8 *x.^14 + 2.75466*10.^8* x.^12 – 5.24248*10^7* x.^10 + 6.15577*10^6 *x.^8 – 420548* x.^6 + 15083.7* x.^4 – 234.2* x.^2 + 1);

n = 131072;

F = fft(u,n);

F1 = fft(u1,n);

F2 = fft(u2,n);

f = Fs*(0:(n/2))/n;

P = 20*log10(6.5*abs(F/Fs));

P1 = 20*log10(9*abs(F1/Fs));

P2 = 20*log10(12*abs(F2/Fs));

plot(f,P(1:n/2+1),f,P1(1:n/2 + 1),f,P2(1:n/2 + 1)), grid

title('Windows GT (N = 3, N = 6, N = 12) in Frequency Domain’)

xlabel('Frequency (y)')

ylabel('F(y),dB')

6. The comparison of the GTM and GT windows (see Fig. 6) and their spectra (see Fig. 7).

Fs = 1024;

x = –0.5:1/Fs:0.5;

v = x.*exp(–1.68294*x.^2–0.6341278*x.^4);

u =exp(–(x*5.3039.*(1 + 1.5*x.^6 + 2*x.^4)).^2).*( –1696.38*v.^6 + 633.146*v.^4 – 56.2648 *v.^2 + 1);

u1 = exp(–(x*5.3039).^2).*(–1696.38* x.^6 + 633.146* x.^4 – 56.2648 *x.^2 + 1);

plot(x,u,x,u1),grid;

title('W i n d o w s G T M (N = 3) a n d G T (N = 3) i n T i m e D o m a i n' )

legend('G T M','G T')

xlabel('T i m e (x)')

ylabel('u (x)');

n = 131072;

F = fft(u,n);

F1 = fft(u1,n);

f = Fs*(0:(n/2))/n;

P = 20*log10(abs(F/F(1)));

P1 = 20*log10(abs(F1/F1(1)));

plot(f,P(1:n/2 + 1),f,P1(1:n/2 + 1)),grid

title('W i n d o w s G T M (N = 3) a n d G T (N = 3) i n F r e q u e n c y D o m a i n' )

legend('G T M','G T')

xlabel('F r e q u e n c y ( y )')

ylabel('F ( y ), d B');

Fs = 1024;

x = –0.5:1/Fs:0.5;

v = x.*exp(–\(0.540777\)*x.^2–2.918446*x.^4);

u = exp(–(x*5.56658.*(1 + 1.5*x.^6 + 2*x.^4)).^2).*(–87944.8*v.^10 + 78048.7*v.^8 – 22669*v.^6 + 2560.49*v.^4 – 103.289*v.^2 + 1);

u1 = exp(–(x*5.56658).^2).* (–87944.8*x.^10 + 78048.7*x.^8 – 22669*x.^6 + 2560.49*x.^4 – 103.289*x.^2 + 1);

plot(x,u,x,u1),grid ;

title('W i n d o w s G T M (N = 5) a n d G T (N = 5) i n T i m e D o m a i n')

legend('G T M','G T')

xlabel('T i m e ( x )')

ylabel('u ( x )');

n = 131072;

F = fft(u,n);

F1 = fft(u1,n);

f = Fs*(0:(n/2))/n;

P = 20*log10(abs(F/F(1)));

P1 = 20*log10(abs(F1/F1(1)));

plot(f,P(1:n/2 + 1),f,P1(1:n/2 + 1)),grid

title('W i n d o w s G T M (N = 5) a n d G T (N = 5) i n F r e q u e n c y D o m a i n')

legend('G T M','G T')

xlabel('F r e q u e n c y (y)')

ylabel('F ( y ), d B');

Fs = 1024;

x = –0.5:1/Fs:0.5;

v = x.*exp(–0.413772*x.^2–3.172456*x.^4);

u = exp(–(4.6515*x.*(1 – 0.413772*x.^2 + 4*x.^4)).^2).*( –140169* v.^14 + 340116* v.^12 – 306531* v.^10 + 129867*v.^8 – 27010.1* v.^6 + 2621.56 *v.^4 – 100.97* v.^2 + 1);

u1 = exp(–(x*4.6515).^2).*( –140169* x.^14 + 340116* x.^12 – 306531* x.^10 + 129867* x.^8 – 27010.1* x.^6 + 2621.56 *x.^4 – 100.97* x.^2 + 1);

plot(x,u,x,u1),grid ;

title('W i n d o w s G T M (N = 7) a n d G T (N = 7) i n T i m e D o m a i n')

legend('G T M','G T')

xlabel('T i m e (x)')

ylabel('u (x)');

n = 131072;

F = fft(u,n);

F1 = fft(u1,n);

f = Fs*(0:(n/2))/n;

P = 20*log10(abs(F/F(1)));

P1 = 20*log10(abs(F1/F1(1)));

plot(f,P(1:n/2 + 1),f,P1(1:n/2 + 1)),grid

title('W i n d o w s G T M (N = 7) a n d G T (N = 7) i n F r e q u e n c y D o m a i n')

legend('G T M','G T')

xlabel('F r e q u e n c y (y)')

ylabel('F (y), d B');

Fs = 1024;

x = –0.5:1/Fs:0.5;

v = x.*exp(–1.357794*x.^2 – 1.284411*x.^4);

u = exp(–(x*5.4106.*(1 + 1.5*x.^6 + 2*x.^4)).^2).*(2.05259*10^8 *v.^24 – 1.05172*10^9*v.^22 + 2.27233*10^9*v.^20 – 2.71674*10^9*v.^18 + 1.98365*10^9 *v.^16 – 9.21535*10^8*v.^14 + 2.75441*10^8*v.^12 – 5.2421*10^7*v.^10 + 6.15541*10^6 *v.^8 – 420529*v.^6 + 15083.2*v.^4 – 234.197*v.^2 + 1);

u1 = exp(–(x*5.4106).^2).* (2.05259*10^8 *x.^24 – 1.05172*10^9*x.^22 + 2.27233*10^9*x.^20 – 2.71674*10^9*x.^18 + 1.98365*10^9 *x.^16 – 9.21535*10^8* x.^14 + 2.75441*10^8*x.^12 – 5.2421*10^7*x.^10 + 6.15541*10^6 *x.^8 – 420529*x.^6 + 15083.2*x.^4 – 234.197*x.^2 + 1);

plot(x,u,x,u1),grid ;

title('W i n d o w s G T M (N = 12) a n d G T (N = 12) i n T i m e D o m a i n')

legend('G T M','G T')

xlabel('T i m e (x)')

ylabel('u (x)');

n = 131072;

F = fft(u,n);

F1 = fft(u1,n);

f = Fs*(0:(n/2))/n;

P = 20*log10(abs(F/F(1)));

P1 = 20*log10(abs(F1/F1(1)));

plot(f,P(1:n/2 + 1),f,P1(1:n/2+1)),grid

title('W i n d o w s G T M (N = 12) a n d G T (N = 12) i n F r e q u e n c y D o m a i n')

legend('G T M','G T')

xlabel('F r e q u e n c y (y)')

ylabel('F (y), d B');

APPENDIX C

The Results of Computing Certain Integrals to Evaluate the Parameters of Window Functions (Wolfram Alpha)

integral_(–0.5)^0.5 (exp(–(5.3039 x)^2) L_3^0.5((5.3039 x)^2))/(L_3^0.5(0)) dx = 0.152991

integral_(–0.5)^0.5 ((exp(–(5.3039 x)^2) L_3^0.5((5.3039 x)^2))/(L_3^0.5(0)))^2 dx = 0.130915

integral_(–0.5)^0.5 (exp(–(5.3039 x)^2) L_3^0.5((5.3039 x)^2) cos(π x))/(L_3^0.5(0)) dx = 0.152713

integral_(–0.5)^0.5 (exp(–(4.53316 x)^2) L_4^0.5((4.53316 x)^2))/(L_4^0.5(0)) dx = 0.159561

integral_(–0.5)^0.5 ((exp(–(4.53316 x)^2) L_4^0.5((4.53316 x)^2))/(L_4^0.5(0)))^2 dx = 0.138604

integral_(–0.5)^0.5 (exp(–(4.53316 x)^2) L_4^0.5((4.53316 x)^2) cos(π x))/(L_4^0.5(0)) dx = 0.158743

integral_(–0.5)^0.5 (exp(–(5.56658 x)^2) L_5^0.5((5.56658 x)^2))/(L_5^0.5(0)) dx = 0.117523

integral_(–0.5)^0.5 ((exp(–(5.56658 x)^2) L_5^0.5((5.56658 x)^2))/(L_5^0.5(0)))^2 dx = 0.103945

integral_(–0.5)^0.5 (exp(–(5.56658 x)^2) L_5^0.5((5.56658 x)^2) cos(π x))/(L_5^0.5(0)) dx = 0.117639

integral_(–0.5)^0.5 (exp(–(5.0395 x)^2) L_6^0.5((5.0395 x)^2))/(L_6^0.5(0)) dx = 0.119713

integral_(–0.5)^0.5 ((exp(–(5.0395 x)^2) L_6^0.5((5.0395 x)^2))/(L_6^0.5(0)))^2 dx = 0.107035

integral_(–0.5)^0.5 (exp(–(5.0395 x)^2) L_6^0.5((5.0395 x)^2) cos(π x))/(L_6^0.5(0)) dx = 0.119961

integral_(–0.5)^0.5 (exp(–(4.6515 x)^2) L_7^0.5((4.6515 x)^2))/(L_7^0.5(0)) dx = 0.120908

integral_(–0.5)^0.5 ((exp(–(4.6515 x)^2) L_7^0.5((4.6515 x)^2))/(L_7^0.5(0)))^2 dx = 0.109086

integral_(–0.5)^0.5 (exp(–(4.6515 x)^2) L_7^0.5((4.6515 x)^2) cos(π x))/(L_7^0.5(0)) dx = 0.121318

integral_(–0.5)^0.5 (exp(–(4.0985 x)^2) L_9^0.5((4.0985 x)^2))/(L_9^0.5(0)) dx = 0.12202

integral_(–0.5)^0.5 ((exp(–(4.0985 x)^2) L_9^0.5((4.0985 x)^2))/(L_9^0.5(0)))^2 dx = 0.111704

integral_(–0.5)^0.5 (exp(–(4.0985 x)^2) L_9^0.5((4.0985 x)^2) cos(π x))/(L_9^0.5(0)) dx = 0.122793

integral_(–0.5)^0.5 (exp(–(5.4106 x)^2) L_12^0.5((5.4106 x)^2))/(L_12^0.5(0)) dx = 0.0812328

integral_(–0.5)^0.5 ((exp(–(5.4106 x)^2) L_12^0.5((5.4106 x)^2))/(L_12^0.5(0)))^2 dx = 0.0749071

integral_(–0.5)^0.5 (exp(–(5.4106 x)^2) L_12^0.5((5.4106 x)^2) cos(π x))/(L_12^0.5(0)) dx = 0.0813022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, Z.D. Window Functions with a Quasi-Rectangular Spectrum. J. Commun. Technol. Electron. 65, 1010–1021 (2020). https://doi.org/10.1134/S1064226920080070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920080070

Navigation