Skip to main content
Log in

Phytochemical Study and Antibacterial Effects of Fraxinus angustifolia Vahl (Algeria): Experimental and Computational Investigations

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

We investigated experimentally the composition of volatile isolates from the leaves and seeds of fraxinus angustifolia Vahl and their antimicrobial activity. The experimental work was supported by a theoretical study, using the Functional Density Theory. The calculations were performed at the B3LYP/6–31 g-d, p), in order to determine the structures of major volatile compounds and the different descriptors of reactivity and biological activity. The chemical composition of the volatile isolates obtained by hydrodistillation of the leaves and seeds are evaluated by the analytical method of gas chromatography-mass spectrometry (GC-MS). We found that the leaves are composed of abundant compounds, specifically, docosane methyl (30.2%), n-Pentacosane (28.5), α-cadinol (9.0%) and T-muurolol (5.9%). Moreover, the isolate from the seeds, is found to be mainly composed of α-cadinol (23.2%) and epi-methyljasmonate (34. 2%). Additionally, we perform antimicrobial activity tests on the volatile isolated using the zone of inhibition (agar disk-diffusion method) of four bacteria strains, mainly, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. The values of leaves range from 100 to 300 µg of volatile compounds, whereas for the seeds the values lie between 20 and 300 µg. Furthermore, antifungal susceptibility tests are conducted on two yeast strains: Saccharomyces cerevisiae and Candida albicans. The seeds have a better inhibition than the leaves, with 20 and 300 µg respectively. The chemical compositions of the volatile fractions of leaves and seeds are correlated with the antimicrobial results. The reactivity descriptors are calculated to determine stability and microbiological activity of the above compounds. The Isopimaradiene presents the higher microbiological activity and the most stable T-muurololis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boucher, H.W., Talbot, G.H., Bradley, J.S., et al.: Bad bugs, no drugs: no ESKAPE! an update from the infectious diseases Society of America. Clin. Infect Dis. 48, 1–12 (2009). https://doi.org/10.1086/595011

    Article  Google Scholar 

  2. Giamarellou, H.: Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int. J. Antimicrob. Agents 36, S50–S54 (2010)

    Article  Google Scholar 

  3. Coates, A., Hu, Y., Bax, R., Page, C.: The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 1, pages895-910 (2002)

    Article  Google Scholar 

  4. Marasini, B.P., Baral, P., Aryal, P., et al.: Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/265425

    Article  Google Scholar 

  5. Bobbarala, V.: (2012) Edited by Varaprasad Bobbarala

  6. Manandhar, S., Luitel, S., Dahal, R.K.: In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Trop. Med. (2019). https://doi.org/10.1155/2019/1895340

    Article  Google Scholar 

  7. Organisation Mondiale de la Santé: (2020) Thèmes de santé Médecine traditionnelle. https://www.who.int/topics/traditional_medicine/fr/

  8. Medina, A.L., Lucero, M.E., Holguin, F.O., et al.: Composition and antimicrobial activity of Anemopsis californica leaf oil. J. Agric. Food Chem. 53, 8694–8698 (2005). https://doi.org/10.1021/jf0511244

    Article  Google Scholar 

  9. Al-Haj, N., Reem, A., Al-Shamahy, H., et al.: Antimicrobial activity of five yemeni medicinal plants against selected human pathogenic bacteria and fungi. Am. J. Plant Sci. 10, 1699–1707 (2019). https://doi.org/10.4236/ajps.2019.1010121

    Article  Google Scholar 

  10. Caccioni, D.R.L., Guizzardi, M.: Inhibition of germination and growth of fruit and vegetable postharvest pathogenic fungi by essential oil components. J. Essent. Oil Res. 6, 173–179 (1994). https://doi.org/10.1080/10412905.1994.9698349

    Article  Google Scholar 

  11. Cimanga, K., Apers, S., De Bruyne, T., et al.: Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 79, 213–220 (2002). https://doi.org/10.1080/10412905.2002.9699894

    Article  Google Scholar 

  12. Bozin, B., Mimica-Dukic, N., Simin, N., Anackov, G.: Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 54, 1822–1828 (2006). https://doi.org/10.1021/jf051922u

    Article  Google Scholar 

  13. Cordery, A., Rao, A.P., Ravishankar, S.: Antimicrobial activities of essential oils, plant extracts and their applications in foods—a review. J. Agric. Environ. Sci. 7, 76–89 (2018). https://doi.org/10.15640/jaes.v7n2a9

    Article  Google Scholar 

  14. Preedy, V.: Essential Oils in Food Preservation, Flavor and Safety. Academic Press, Cambridge (2015)

    Google Scholar 

  15. Youdim, K.A., Deans, S.G., Finlayson, H.J.: The antioxidant properties of thyme (Thymus zygis L.) essential oil: an inhibitor of lipid peroxidation and a free radical scavenger. J. Essent. Oil Res. 14, 210–215 (2002). https://doi.org/10.1080/10412905.2002.9699825

    Article  Google Scholar 

  16. Fasseas, M.K., Mountzouris, K.C., Tarantilis, P.A., et al.: Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem. 106, 1188–1194 (2008). https://doi.org/10.1016/j.foodchem.2007.07.060

    Article  Google Scholar 

  17. Turek, C., Stintzing, F.C.: Stability of essential oils: a review. Compr. Rev. Food Sci. Food Saf. 12, 40–53 (2013). https://doi.org/10.1111/1541-4337.12006

    Article  Google Scholar 

  18. Sarfraz, I., Rasul, A., Jabeen, F., et al.: Fraxinus: a plant with versatile pharmacological and biological activities. Evid. -Based Complement Altern. Med. (2017). https://doi.org/10.1155/2017/4269868

    Article  Google Scholar 

  19. Atmani, D., Chaher, N., Berboucha, M., et al.: Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 112, 303–309 (2009). https://doi.org/10.1016/j.foodchem.2008.05.077

    Article  Google Scholar 

  20. Berboucha, M., Ayouni, K., Atmani, D., et al.: Kinetic study on the inhibition of xanthine oxidase by extracts from two selected algerian plants traditionally used for the treatment of inflammatory diseases. J. Med. Food 13, 896–904 (2010)

    Article  Google Scholar 

  21. Ayouni, K., Berboucha-rahmani, M., Kim, H.K., et al.: Angustifolia leaf and stem bark extracts. Ind. Crop Prod. (2016). https://doi.org/10.1016/j.indcrop.2016.01.001

    Article  Google Scholar 

  22. European Medicines Agency: (2012) No Title. Comm Herb Med Prod EMA/HMPC/239271/2011, 27 March 2012

  23. Heatley, N.G.: A rapid method for the assay of penicillin. Biochem. J. 38, 61–65 (1944). https://doi.org/10.1139/cjr47e-002

    Article  Google Scholar 

  24. Hudzicki, J.: Kirby-Bauer disk diffusion susceptibility test protocol author information. Am Soc Microbiol 1–13 (2009)

  25. Van Den Doo, H., Kratz, D.P.: A generalisation of the retention index system including linear temperature programme Gas-Liquid partition chromatography. J. Chromatogr. 11, 463–471 (1963). https://doi.org/10.1007/978-3-319-70262-9_7

    Article  Google Scholar 

  26. Wiley, J.: Wiley Registry of Mass Spectral Data, with NIST 2008, 9th edn. Wiley, Hoboken (2008)

    Google Scholar 

  27. Adams, R.P.: Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th edn. Allured publishing corporation, Carol Stream (2007)

    Google Scholar 

  28. Joulain, D., König, W.A.: The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. EB-Verlag, Berlin (1998)

    Google Scholar 

  29. Cavaleiro, C., Salgueiro, L.R., Miguel, M.G., Da ProençaCunha, A.: Analysis by gas chromatography-mass spectrometry of the volatile components of Teucrium lusitanicum and Teucrium algarbiensis. J. Chromatogr. A 1033, 187–190 (2004). https://doi.org/10.1016/j.chroma.2004.01.005

    Article  Google Scholar 

  30. Cavaleiro, C., Gonçalves, M.J., Serra, D., et al.: Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. Laínz) M. Laínz, signalised by the antifungal activity. J. Pharm. Biomed. Anal. 54, 619–622 (2011). https://doi.org/10.1016/j.jpba.2010.09.039

    Article  Google Scholar 

  31. Hammer, K.A., Carson, C.F., Riley, T.V.: Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86, 985–990 (1999). https://doi.org/10.1046/j.1365-2672.1999.00780.x

    Article  Google Scholar 

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Ja, R.: Gaussian 03, Revision B.01. Gaussian Inc., Wallingford (2003)

    Google Scholar 

  33. Farooq, U., Ayub, K., Hashmi, M.A., et al.: A new rosane-type diterpenoid from Stachys parviflora and its density functional theory studies. Nat. Prod. Res. 29, 813–819 (2014). https://doi.org/10.1080/14786419.2014.987775

    Article  Google Scholar 

  34. Liu, J., Lv, B., Liu, H., et al.: Insight into the C-F bond mechanism of molecular analogs for antibacterial drug design. Nat. Prod. Res. 32, 1312–1315 (2017). https://doi.org/10.1080/14786419.2017.1340290

    Article  Google Scholar 

  35. Lee, C., Yang, W., Parr, R.G.: Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. B 37, 785 (1988)

    Article  Google Scholar 

  36. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284 (1985)

    Article  Google Scholar 

  37. McLean, A.D., Chandler, G.S.: Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72, 5639–5648 (1980). https://doi.org/10.1063/1.438980

    Article  Google Scholar 

  38. Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Article  Google Scholar 

  39. Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978). https://doi.org/10.1063/1.436185

    Article  Google Scholar 

  40. Koopmans, T.: Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1, 104–113 (1934). https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  MATH  Google Scholar 

  41. Kostova, I., Iossifova, T.: Chemical components of Fraxinus species. Fitoterapia 78, 85–106 (2007). https://doi.org/10.1016/j.fitote.2006.08.002

    Article  Google Scholar 

  42. Hosny, M., Çaliş, İ, Nishibe, S.: Secoiridoids from Fraxinus angustifolia. Planta Med. 57, 1991 (1991)

    Article  Google Scholar 

  43. Markovic, I., Norris, D.M., Phillips, J.K., Webster, F.X.: Volatiles involved in the nonhost rejection of Fraxinus pennsylvanica by Lymantria dispar larvae. J. Agric. Food Chem. 44, 929–935 (1996). https://doi.org/10.1021/jf9502111

    Article  Google Scholar 

  44. M’sou, S., Alifriqui, M., Romane, A.: Phytochemical study and biological effects of the essential oil of Fraxinus dimorpha Coss & Durieu§. Nat. Prod. Res. 31, 2797–2800 (2017). https://doi.org/10.1080/14786419.2017.1294173

    Article  Google Scholar 

  45. Giardinieri, A., Schicchi, R., Geraci, A., et al.: Fixed oil from seeds of narrow-leaved ash (F. angustifolia subsp. angustifolia): chemical profile, antioxidant and antiproliferative activities. Food Res. Int. 119, 369–377 (2019). https://doi.org/10.1016/j.foodres.2019.02.013

    Article  Google Scholar 

  46. Wasternack, C., Hause, B.: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013). https://doi.org/10.1093/aob/mct067

    Article  Google Scholar 

  47. Wang, J., Wu, D., Wang, Y., Xie, D.: Jasmonate action in plant defense against insects Jiaojiao. J. Exp. Biol. 70, 3391–3400 (2019). https://doi.org/10.1093/jxb/erz174

    Article  Google Scholar 

  48. Hmamouchi, M., Hamamouchi, J., Zouhdi, M., Bessiere, J.M.: Chemical and antimicrobial properties of essential oils of five Moroccan pinaceae. J. Essent. Oil Res. 13, 298–302 (2001). https://doi.org/10.1080/10412905.2001.9699699

    Article  Google Scholar 

  49. Astani, A., Reichling, J., Schnitzler, P.: Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phyther. Res. 24, 673–679 (2009). https://doi.org/10.1002/ptr2955

    Article  Google Scholar 

  50. Martin, S., Padilla, E., Ocete, M.A., et al.: Anti-inflammatory activity of the essential oil of Bupleurum fruticescens. Planta Med. 59, 533–536 (1993). https://doi.org/10.1055/s-2006-959755

    Article  Google Scholar 

  51. Mabou, F.D., Ngnokam, D., Harakat, D., Voutquenne-Nazabadioko, L.: New oleanane-type saponins: leptocarposide B-D, from Ludwigia leptocarpa (Onagraceae). Phytochem. Lett. 14, 159–164 (2015)

    Article  Google Scholar 

  52. Loizzo, M.R., Tundis, R., Menichini, F., et al.: Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell. Prolif. 41, 1002–1012 (2008). https://doi.org/10.1111/j.1365-2184.2008.00561.x

    Article  Google Scholar 

  53. Su, Y.C., Hsu, K.P., Wang, E.I.C., Ho, C.L.: Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat. Prod. Commun. 7, 1245–1247 (2012). https://doi.org/10.1177/1934578x1200700938

    Article  Google Scholar 

  54. Tabanca, N., Demirci, F., et al.: Composition and antimicrobial activity of the essential oil of Origanum dolichosiphon P. H. Davis. Chem. Nat. Compd. 37, 238–241 (2001)

    Article  Google Scholar 

  55. Guy, I., Charles, B., Guinaudeau, H., et al.: Essential oils from leaves of two Paraguayan Rutaceae: Zanthoxylum hyemale A. St. Hil. And Z. Naranjillo Griseb. J. Essent. Oil Res. 13, 200–201 (2001). https://doi.org/10.1080/10412905.2001.9699663

    Article  Google Scholar 

  56. Liu, X., Cai, J., Chen, H., et al.: Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 141, 103980 (2020). https://doi.org/10.1016/j.micpath.2020.103980

    Article  Google Scholar 

  57. Kotan, R., Kordali, S., Cakir, A.: Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Fur Naturforsch Sect. C J. Biosci. 62, 507–513 (2007). https://doi.org/10.1515/znc-2007-7-808

    Article  Google Scholar 

  58. Cheng, S.S., Chung, M.J., Lin, C.Y., et al.: Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents. J. Agric. Food Chem. 60, 124–128 (2012). https://doi.org/10.1021/jf2042196

    Article  Google Scholar 

  59. Frankerankenbach, G.M., Hollingshead, J.A., Horenziak, S.A.: (2017) Substrates comprising malodor reduction compositions. United States Pat Appl

  60. Porto, T.S., Rangel, R., Furtado, N.A.J.C., De Carvalho, T.C., Martins, C.H.G., Veneziani, R.C.S., DaCosta, F.B., Vinholis, A.H.C., Cunha, W.R., Heleno, V.C.G., Ambrosio, S.R.: Pimarane-type diterpenes: antimicrobial activity against oral pathogens. Molecules 14(1), 191–199 (2009). https://doi.org/10.3390/molecules14010191

    Article  Google Scholar 

  61. Ambrósio, S.R., Arakawa, N.S., Esperandim, V.R., et al.: Trypanocidal activity of pimarane diterpenes from Viguiera arenaria (Asteraceae). Phyther. Res. 22, 1413–1415 (2008)

    Article  Google Scholar 

  62. Pongprayoon, U., Sematong, T., Tuchinda, P., et al.: Topical antiinflammatory activity of two pimarane diterpenes from Kaempferia pulchra. Phyther. Res. 10, 534–535 (1996)

    Article  Google Scholar 

  63. Mansour, A.M.: Coordination behavior of sulfamethazine drug towards Ru(III) and Pt(II) ions: synthesis, spectral, DFT, magnetic, electrochemical and biological activity studies. Inorg. Chim. Acta 394, 436–445 (2013). https://doi.org/10.1016/j.ica.2012.08.025

    Article  Google Scholar 

  64. Tidjani-rahmouni, N., Bensiradj, H., Djebbar, S., Benali-baitich, O.: Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper (II) with isonitrosoacetophenone. Biological activities. J. Mol. Struct. 1075, 254–263 (2014). https://doi.org/10.1016/j.molstruc.2014.06.067

    Article  Google Scholar 

  65. Zhang, F., Tang, Y., Cao, Z., et al.: Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corros. Sci. 61, 1–9 (2012). https://doi.org/10.1016/j.corsci.2012.03.045

    Article  Google Scholar 

  66. Andrade-Ochoa, S., Nevárez-Moorillón, G.V., Sánchez-Torres, L.E., et al.: Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement Altern. Med. 15, 1–11 (2015). https://doi.org/10.1186/s12906-015-0858-2

    Article  Google Scholar 

  67. Frau, J., Glossman-Mitnik, D.: Conceptual DFT study of the local chemical reactivity of the colored BISARG melanoidin and its protonated derivative. Front. Chem. 6, 1–9 (2018). https://doi.org/10.3389/fchem.2018.00136

    Article  Google Scholar 

  68. Koroch, A.R., Juliani, H.R.: Bioactivity of essential oils and their components. In: Falvours and Fragrances Chemistry, pp. 87–115. Springer, Berlin (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouaghi, N., Houda Bensiradj, N.E., Cavaleiro, C. et al. Phytochemical Study and Antibacterial Effects of Fraxinus angustifolia Vahl (Algeria): Experimental and Computational Investigations. Waste Biomass Valor 12, 3605–3616 (2021). https://doi.org/10.1007/s12649-020-01240-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01240-w

Keywords

Navigation