Skip to main content
Log in

The Tribological Mechanism of Cerium Oxide Nanoparticles as Lubricant Additive of Poly-Alpha Olefin

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Oleylamine (hereinafter referred to as OM)-modified CeO2 nanoparticles were synthesized by a one-pot pyrolysis method. The tribological properties of the as-prepared CeO2 nanoparticles as the lubricant additive in poly-alpha olefin (PAO) were investigated with a four-ball machine, and their lubricating mechanism was discussed in relation to worn surface analyses by SEM, EDS, and XPS. Findings indicate that these nanoparticles exhibit good dispersibility as well as excellent anti-wear ability in PAO. This is because OM-modified CeO2 nanoparticles can catalyze the oxidation of metallic Fe to form ferrite oxide-containing tribo-film. Under the condition of ASTM D2266-2001, the same lowest WDS was obtained at the concentration of 0.2 wt% and 1.8 wt%. When the concentration of CeO2 is 0.2 wt%, a compact catalytic oxidation tribo-film is formed, which has more outstanding long-term anti-wear ability. When 1.8 wt% CeO2 is added, the tribo-film formed is the combination of catalytic oxidation film and ceria deposition film, which has more significant bearing capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shahnazar, S., Bagheri, S., Abd Hamid, S.B.: Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy 41(4), 3153–3170 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.040

    Article  CAS  Google Scholar 

  2. Gulzar, M., Masjuki, H.H., Kalam, M.A., Varman, M., Zulkifli, N.W.M., Mufti, R.A., Zahid, R.: Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 18(8), 1–25 (2016). https://doi.org/10.1007/s11051-016-3537-4

    Article  CAS  Google Scholar 

  3. Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016). https://doi.org/10.1016/j.triboint.2016.05.020

    Article  CAS  Google Scholar 

  4. Ali, M.K.A., Xianjun, H.: Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnol. Rev. 4, 4 (2015). https://doi.org/10.1515/ntrev-2015-0031

    Article  CAS  Google Scholar 

  5. Tang, Z.L., Li, S.H.: A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 18(3), 119–139 (2014). https://doi.org/10.1016/j.cossms.2014.02.002

    Article  CAS  Google Scholar 

  6. Zhang, Y.J., Xu, Y.H., Yang, Y.B., Zhang, S.M., Zhang, P.Y., Zhang, Z.J.: Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives. Ind. Lubr. Tribol. 67(3), 227–232 (2015). https://doi.org/10.1108/ilt-10-2012-0098

    Article  Google Scholar 

  7. Li, Y.H., Liu, T.T., Zhang, Y.J., Zhang, P.Y., Zhang, S.M.: Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants. Ind. Lubr. Tribol. 70(3), 519–526 (2018). https://doi.org/10.1108/ilt-05-2017-0143

    Article  Google Scholar 

  8. Zhou, J.F., Yang, J.J., Zhang, Z.J., Liu, W.M., Xue, Q.J.: Study on the structure and tribological properties of surface-modified Cu nanoparticles. Mater. Res. Bull. 34(9), 1361–1367 (1999)

    Article  CAS  Google Scholar 

  9. Zhou, J.F., Wu, Z.S., Zhang, Z.J., Liu, W.M., Xue, Q.J.: Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol. Lett. 8(2000), 213–218 (2000)

    Article  CAS  Google Scholar 

  10. Yang, G.B., Zhang, J.F., Zhang, S.M., Yu, L.G., Zhang, P.Y., Zhu, B.L.: Preparation of triazine derivatives and evaluation of their tribological properties as lubricant additives in poly-alpha olefin. Tribol. Int. 62, 163–170 (2013). https://doi.org/10.1016/j.triboint.2013.02.024

    Article  CAS  Google Scholar 

  11. Liu, Y.H., Xin, L., Zhang, Y.J., Chen, Y.F., Zhang, S.M., Zhang, P.Y.: The effect of Ni nanoparticles on the lubrication of a DLC-based solid–liquid synergetic system in all lubrication regimes. Tribol. Lett. (2017). https://doi.org/10.1007/s11249-017-0814-z

    Article  Google Scholar 

  12. Wu, L.L., Zhang, Y.J., Yang, G.B., Zhang, S.M., Yu, L.G., Zhang, P.Y.: Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv. 6(74), 69836–69844 (2016). https://doi.org/10.1039/c6ra10042b

    Article  CAS  Google Scholar 

  13. Liu, X.Y., Xu, N., Li, W.M., Zhang, M., Chen, L.F., Lou, W.J., Wang, X.B.: Exploring the effect of nanoparticle size on the tribological properties of SiO 2 / polyalkylene glycol nanofluid under different lubrication conditions. Tribol. Int. 109, 467–472 (2017). https://doi.org/10.1016/j.triboint.2017.01.007

    Article  CAS  Google Scholar 

  14. Wright, R.A., Wang, K.W., Qu, J., Zhao, B.: Oil-soluble polymer brush grafted nanoparticles as effective lubricant additives for friction and wear reduction. Angew. Chem. Int. Ed. Engl. 55(30), 8656–8660 (2016). https://doi.org/10.1002/anie.201603663

    Article  CAS  Google Scholar 

  15. Seymour, B.T., Wright, R.A.E., Parrott, A.C., Gao, H.Y., Martini, A., Qu, J., Dai, S., Zhao, B.: Poly(alkyl methacrylate) Brush-grafted silica nanoparticles as oil lubricant additives: effects of alkyl pendant groups on oil dispersibility, stability, and lubrication property. ACS Appl. Mater. Interfaces 9(29), 25038–25048 (2017). https://doi.org/10.1021/acsami.7b06714

    Article  CAS  Google Scholar 

  16. Gupta, R.N., Harsha, A.P.: Antiwear and extreme pressure performance of castor oil with nano-additives. Proc. Inst. Mech. Eng. 232(9), 1055–1067 (2017). https://doi.org/10.1177/1350650117739159

    Article  CAS  Google Scholar 

  17. Pena-Paras, L., Maldonado-Cortes, D., Taha-Tijerina, J., Irigoyen, M., Guerra, J.: Experimental evaluation of the tribological behaviour of CeO2 nanolubricants under extreme pressures. Mater. Sci. Eng. 400, 072003 (2018)

    Google Scholar 

  18. Gupta, R.N., Harsha, A.P.: Friction and wear of nanoadditive-based biolubricants in steel–steel sliding contacts: a comparative study. J. Mater. Eng. Perform. 27(2), 648–658 (2018). https://doi.org/10.1007/s11665-018-3175-3

    Article  CAS  Google Scholar 

  19. Sajeeb, A., Rajendrakumar, P.K.: Tribological assessment of vegetable oil based CeO2/CuO hybrid nano-lubricant. Proc. Inst. Mech. Eng. (2020). https://doi.org/10.1177/1350650119899208

    Article  Google Scholar 

  20. Du, P.F., Chen, G.X., Song, S.Y., Chen, H.I., Li, J., Shao, Y.: Tribological properties of muscovite, CeO2 and their composite particles as lubricant additives. Tribol. Lett. 62(2), 29 (2016). https://doi.org/10.1007/s11249-016-0676-9

    Article  CAS  Google Scholar 

  21. Gupta, R.N., Harsha, A.P., Singh, S.: Tribological study on rapeseed oil with nano-additives in close contact sliding situation. Appl. Nanosci. 8(4), 567–580 (2018). https://doi.org/10.1007/s13204-018-0670-7

    Article  CAS  Google Scholar 

  22. Shen, T.J., Wang, D.X., Yun, J., Liu, Q.L., Liu, X.H., Peng, Z.X.: Tribological properties and tribochemical analysis of nano-cerium oxide and sulfurized isobutene in titanium complex grease. Tribol. Int. 93, 332–346 (2016). https://doi.org/10.1016/j.triboint.2015.09.028

    Article  CAS  Google Scholar 

  23. Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P.: Synthesis and application of inorganic nanoparticles as lubricant components: a review. J. Nanopart. Res. 6, 273–284 (2004). https://doi.org/10.1023/B:NANO.0000034720.79452.e3

    Article  CAS  Google Scholar 

  24. Jiang, Z., Zhang, Y., Yang, G., Yang, K., Zhang, S., Yu, L., Zhang, P.: Tribological properties of tungsten disulfide nanoparticles surface capped by oleylamine and maleic anhydride dodecyl ester as additive in diisooctylsebacate. Ind. Eng. Chem. Res. 56(6), 1365–1375 (2017). https://doi.org/10.1021/acs.iecr.6b04074

    Article  CAS  Google Scholar 

  25. Jiang, Z.Q., Zhang, Y.J., Yang, G.B., Yang, K.P., Zhang, S.M., Yu, L.G., Zhang, P.Y.: Tribological properties of oleylamine-modified ultrathin WS2 nanosheets as the additive in polyalpha olefin over a wide temperature range. Tribol. Lett. 61(3), 24 (2016). https://doi.org/10.1007/s11249-016-0643-5

    Article  CAS  Google Scholar 

  26. Lee, S.S., Zhu, H., Contreras, E.Q., Prakash, A., Puppala, H.L., Colvin, V.L.: High temperature decomposition of cerium precursors to form ceria nanocrystal libraries for biological applications. Chem. Mater. 24(3), 424–432 (2012). https://doi.org/10.1021/cm200863q

    Article  CAS  Google Scholar 

  27. Lee, S.S., Song, W.S., Cho, M.J., Puppala, H.L., Nguyen, P., Zhu, H.G., Segatori, L., Colvin, V.L.: Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7(11), 9693–9703 (2013). https://doi.org/10.1021/nn4026806

    Article  CAS  Google Scholar 

  28. Jiang, Z.Q., Yang, G.B., Zhang, Y.J., Gao, C.P., Ma, J.Y., Zhang, S.M., Zhang, P.Y.: Facile method preparation of oil-soluble tungsten disulfide nanosheets and their tribological properties over a wide temperature range. Tribol. Int. 135, 287–295 (2019). https://doi.org/10.1016/j.triboint.2019.03.011

    Article  CAS  Google Scholar 

  29. Mangolini, F., Rossi, A., Spencer, N.D.: Influence of metallic and oxidized iron/steel on the reactivity of triphenyl phosphorothionate in oil solution. Tribol. Int. 44(6), 670–683 (2011). https://doi.org/10.1016/j.triboint.2010.02.009

    Article  CAS  Google Scholar 

  30. Burghardt, G., Wächter, F., Jacobs, G., Hentschke, C.: Influence of run-in procedures and thermal surface treatment on the anti-wear performance of additive-free lubricant oils in rolling bearings. Wear 328–329, 309–317 (2015). https://doi.org/10.1016/j.wear.2015.02.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by National Natural Science Foundation of China (Grant Nos. 21671053, 51775168 and 51875172) and Scientific and technological innovation team of Henan Province University (Grant No. 19IRTSTHN024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujuan Zhang or Shengmao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Lei, X., Zhang, Y. et al. The Tribological Mechanism of Cerium Oxide Nanoparticles as Lubricant Additive of Poly-Alpha Olefin. Tribol Lett 68, 101 (2020). https://doi.org/10.1007/s11249-020-01340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01340-7

Keywords

Navigation