Skip to main content
Log in

Silicon-containing polyimides: synthesis, properties, and application as optical fiber light guide coatings

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Organosoluble polyimides with tetramethyldisiloxane fragments in the main chain were synthesized by one-step high-temperature polycondensation and their properties were studied. Heat resistant polymers (Tg = 195–240 °C, T10% = 420–490 °C) were tested as protective coatings for quartz optical fibers. The new developed coatings have high thermal (72 h at 300 °C) and hydrolytic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, C.-S. Ha, Progr. Polymer Sci., 2012, 37, 907; DOI: https://doi.org/10.1016/j.progpolymsci.2012.02.005.

    Article  CAS  Google Scholar 

  2. S. V. Vinogradova, V. A. Vasnev, Ya. S. Vygodsky, Russ. Chem. Rev., 1996, 266.

  3. M. I. Bessonov, Poliimidy — klass termostoykikh polimerov [Polyimides as a Class of Heat-Resistant Polymers], Nauka, Leningrad, 1983, 328 pp. (in Russian).

    Google Scholar 

  4. V. V. Korshak, S. V. Vinogradova, Russ. Chem. Rev., 1968, 2024.

  5. C. Sroog, Progr. Polymer Sci., 1991, 16, 561; DOI: https://doi.org/10.1016/0079-6700(91)90010-I.

    Article  CAS  Google Scholar 

  6. K. L. Mittal, Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, 3, CRC Press, 2005, 570.

    Google Scholar 

  7. J.-J. Huang, Y.-P. Chen, S.-Y. Lien, K.-W. Weng, C.-H. Chao, Curr. Appl. Physics, 2011, 11, 266; DOI: https://doi.org/10.1016/j.cap.2010.11.057.

    Article  Google Scholar 

  8. S. Nakano, N. Saito, K. Miura, T. Sakano, T. Ueda, K. Sugi, H. Yamaguchi, I. Amemiya, M. Hiramatsu, A. Ishida, J. Society for Information Display, 2012, 20, 493; DOI: https://doi.org/10.1002/jsid.111.

    Article  CAS  Google Scholar 

  9. H. Yamaguchi, T. Ueda, K. Miura, N. Saito, S. Nakano, T. Sakano, K. Sugi, I. Amemiya, M. Hiramatsu, A. Ishida, Late-News Paper, 2012, 43, 1002; DOI: https://doi.org/10.1002/j.2168-0159.2012.tb05961.x.

    Google Scholar 

  10. H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, R. Averitt, J. Physics D: Applied Physics, 2008, 41, 232004; DOI: https://doi.org/10.1088/0022-3727/41/23/232004.

    Article  Google Scholar 

  11. S. Metz, R. Holzer, P. Renaud, Lab on a Chip, 2001, 1, 29; DOI: https://doi.org/10.1039/B103896F.

    Article  CAS  Google Scholar 

  12. K. S. Levchenko, K. A. Chudov, D. Yu. Demin, G. E. Adamov, N. O. Poroshin, P. S. Shmelin, E. P. Grebennikov, S. N. Chvalun, V. P. Zubov, Russ. Chem. Bull., 2019, 68, 1321; DOI: https://doi.org/10.1007/s11172-019-2559-3.

    Article  CAS  Google Scholar 

  13. S. L. Semenov, D. A. Sapozhnikov, D. Yu. Erin, O. N. Zabegaeva, I. A. Kushtavkina, K. N. Nishchev, Ya. S. Vygodsky, E. M. Dianov, Kvantovaya elektronika [Quantum Electronics], 2015, 330 (in Russian).

  14. A. Kosolapov, E. Plastinin, S. Semenov, B. Baiminov, D. Sapozhnikov, D. Alekseeva, Ya. Vygodsky, Kratkiye soobshcheniya po fizike Fizicheskogo ins-ta im. P. N. Lebedeva RAN [Phys. Lett. of P. N. Lebedev Phys. Inst. of RAS], 2017, 10 (in Russian).

  15. B. A. Baiminov, D. A. Sapozhnikov, A. V. Chuchalov, D. D. Alekseeva, A. F. Kosolapov, S. L. Semenov, Ya. S. Vygodsky, Sb. dokl. konf. “Opticheskiye tekhnologii, materialy i sistemy” [Coll. Reports Conf. “Optical Technologies, Materials and Systems”] (Moscow, 2017), Physics and Technology Institute of Moscow Technological University, 2017, 251–256 pp. (in Russian).

  16. K. Satori, K. Fukuchi, Y. Kurosawa, A. Hongo, N. Takeda, Smart Structures and Materials 2001: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, 2001, 4328, 285; DOI: https://doi.org/10.1117/12.435531.

    CAS  Google Scholar 

  17. X. Huang, D. Sheng, K. Cen, H. Zhou, Sensors and Actuators B: Chemical, 2007, 127, 518; DOI: https://doi.org/10.1016/j.snb.2007.05.007.

    Article  CAS  Google Scholar 

  18. K.-C. Chang, C. Hsu, H. Lu, W. Ji, C. Chang, W. Li, T. Chuang, J. Yeh, W. Liu, M. Tsai, Express Polymer Letters, 2014, 8, 243; DOI: https://doi.org/10.3144/expresspolymlett.2014.28.

    Article  Google Scholar 

  19. Y.-H. Yu, J.-M. Yeh, S.-J. Liou, Y.-P. Chang, Acta Materialia, 2004, 52, 475; DOI: https://doi.org/10.1016/j.actamat.2003.09.031.

    Article  CAS  Google Scholar 

  20. C.-C. Chang, W.-C. Chen, Chem. Materials, 2002, 14, 4242; DOI: https://doi.org/10.1021/cm0202310.

    Article  CAS  Google Scholar 

  21. N. Furukawa, M. Yuasa, Y. Kimura, J. Polymer Sci., Part A: Polymer Chem., 1998, 36, 2237.

    Article  CAS  Google Scholar 

  22. S. V. Vinogradova, Ya. S. Vygodsky, Russ. Chem. Rev., 1973, 1225.

  23. S. Tiptipakorn, S. Damrongsakkul, S. Ando, K. Hemvichian, S. Rimdusit, Polymer Degradation and Stability, 2007, 92, 1265; DOI: https://doi.org/10.1016/j.polymdegradstab.2007.03.021.

    Article  CAS  Google Scholar 

  24. M. Bruma, B. Schulz, J. Macromolecular Sci., Part C, 2006, 41, 1; DOI: https://doi.org/10.1081/mc-100002054.

    Article  Google Scholar 

  25. T. Takeichi, T. Agag, R. Zeidam, J. Polymer Sci., Part A: Polymer Chem., 2001, 39, 2633; DOI: https://doi.org/10.1002/pola.1240.

    Article  CAS  Google Scholar 

  26. R. Chavez, E. Ionescu, C. Fasel, R. Riedel, Chem. Materials, 2010, 22, 3823; DOI: https://doi.org/10.1021/cm1010746.

    Article  CAS  Google Scholar 

  27. Y. Li, D. Chen, Q. Lu, X. Qian, Z. Zhu, J. Yin, Appl. Surface Sci., 2005, 241, 471; DOI: https://doi.org/10.1016/j.apsusc.2004.07.051.

    Article  CAS  Google Scholar 

  28. C. M. Mahoney, J. A. Gardella, J. C. Rosenfeld, Macro-molecules, 2002, 35, 5256; DOI: https://doi.org/10.1021/ma010353y.

    Article  CAS  Google Scholar 

  29. Y. Terui, S. Ando, High Performance Polymers, 2016, 18, 825; DOI: https://doi.org/10.1177/0954008306068269.

    Article  Google Scholar 

  30. E. Hamciuc, C. Hamciuc, M. Cazacu, M. Ignat, G. Zarnescu, Eur. Polym. J., 2009, 45, 182; DOI: https://doi.org/10.1016/j.eurpolymj.2008.10.028.

    Article  CAS  Google Scholar 

  31. S. Rimdusit, W. Benjapan, S. Assabumrungrat, T. Takeichi, R. Yokota, Polymer Engineering & Science, 2007, 47, 489; DOI: https://doi.org/10.1002/pen.20723.

    Article  CAS  Google Scholar 

  32. M. Simionescu, L. Sacarescu, R. Ardeleanu, G. Sacarescu, High Performance Polymers, 2005, 17, 73; DOI: https://doi.org/10.1177/0954008305042754.

    Article  CAS  Google Scholar 

  33. H. B. Park, C. H. Jung, Y. K. Kim, S. Y. Nam, S. Y. Lee, Y. M. Lee, J. Membrane Sci., 2004, 235, 87; DOI: https://doi.org/10.1016/j.memsci.2004.01.025.

    Article  CAS  Google Scholar 

  34. H. B. Park, D. W. Han, Y. M. Lee, Chem. Materials, 2003, 15, 2346; DOI: https://doi.org/10.1021/cm030016z.

    Article  CAS  Google Scholar 

  35. EP Pat. 0354289; 1990.

  36. D. A. Sapozhnikov, B. A. Bayminov, O. N. Zabegaeva, D. D. Alexeeva, S. L. Semjonov, A. F. Kosolapov, E. Plastinin, M. I. Buzin, Y. S. Vygodskii, High Performance Polymers, 2017, 29, 663; DOI: https://doi.org/10.1177/0954008317696567.

    Article  CAS  Google Scholar 

  37. Pat. RF 2610503C1; 2017 (in Russian).

  38. M. J. Matthewson, C. R. Kurkjian, S. T. Gulati, J. Am. Ceramic Soc., 1986, 69, 815; DOI: https://doi.org/10.1111/j.1151-2916.1986.tb07366.x.

    Article  CAS  Google Scholar 

  39. V. V. Korshak, S. V. Vinogradova, Y. S. Vygodskii, J. Macro-molecular Sci., Part C: Polymer Rev., 1974, 11, 45; DOI: https://doi.org/10.1080/15583727408546022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sapozhnikov.

Additional information

Based on the materials of the International Conference “Chemistry of Organoelement Compounds and Polymers 2019” (November 18–22, 2019, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1486–1491, August, 2020.

The authors are grateful to E. S. Afanas’ev for conducting thermomechanical tests of polymers.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-29-17035_mk). Studies of polymer properties were financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikov, D.A., Chuchalov, A.V., Bayminov, B.A. et al. Silicon-containing polyimides: synthesis, properties, and application as optical fiber light guide coatings. Russ Chem Bull 69, 1486–1491 (2020). https://doi.org/10.1007/s11172-020-2927-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2927-z

Key words

Navigation