Skip to main content
Log in

Conductivity increase effect in nanocomposite polymer gel electrolytes: manifestation in the IR spectra

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Nanocomposite polymer electrolytes based on poly(ethylene glycol) diacrylate and 1 M LiBF4 solution in γ-butyrolactone containing SiO2 nanoparticles were studied by FT IR spectroscopy. Quantum chemical modeling of five different solvate complexes of ions composed of LiBF4 with solvent molecules was carried out and their theoretical IR spectra were calculated. The compositions of the solvate complexes of LiBF4 in the nanocomposite gel electrolyte were studied by comparing the experimental and theoretical IR spectra. It was concluded that the conductivity peak observed upon adding 2 wt.% SiO2 is due to the appearance of mobile ions as a consequence of ionic dissociation on the surface of nanoparticles at their optimal configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Keller, A. Varzi, S. Passerini, J. Power Sources, 2018, 392, 206; DOI:https://doi.org/10.1016/j.jpowsour.2018.04.099.

    Article  CAS  Google Scholar 

  2. O. V. Yarmolenko, A. V. Yudina, K. G. Khatmullina, Russ. J. Electrochem., 2018, 54, 325; DOI: https://doi.org/10.1134/S1023193518040092.

    Article  CAS  Google Scholar 

  3. S. Caimi, A. Klaue, H. Wu, M. Morbidelli, Nanomaterials, 2018, 8, 926; DOI: https://doi.org/10.3390/nano8110926.

    Article  Google Scholar 

  4. S. Wu, J. Ning, F. Jiang, J. Shi, F. Huang, ACS Omega, 2019, 4, 16309; DOI: https://doi.org/10.1021/acsomega.9b01541.

    Article  CAS  Google Scholar 

  5. C. M. Costa, M. Kundu, V. F. Cardoso, A. V. Machado, M. M. Silva, J. Membr. Sci., 2018, 564, 842; DOI: https://doi.org/10.1016/j.memsci.2018.07.092.

    Article  CAS  Google Scholar 

  6. J. Zhang, Y. Xiang, M. I. Jamil, J. Lu, Q. Zhang, X. Zhan, F. Chen, J. Membr. Sci., 2018, 564, 753; DOI: https://doi.org/10.1016/j.memsci.2018.07.056.

    Article  CAS  Google Scholar 

  7. N. Paranjape, P. C. Mandadapu, G. Wu, H. Q. Lin, Polymer, 2017, 111, 1; DOI: https://doi.org/10.1016/j.polymer.2017.01.014.

    Article  CAS  Google Scholar 

  8. O. V. Yarmolenko, A. V. Yudina, A. A. Marinin, A. V. Chernyak, V. I. Volkov, N. I. Shuvalova, A. F. Shestakov, Russ. J. Electrochem., 2015, 51, 412; DOI: https://doi.org/10.1134/S1023193515050171.

    Article  CAS  Google Scholar 

  9. A. V. Yudina, M. P. Berezin, G. R. Baymuratova, N. I. Shuvalova, O. V. Yarmolenko, Russ. Chem. Bull., 2017, 66, 1278; DOI: https://doi.org/10.1007/s11172-017-1885-6.

    Article  CAS  Google Scholar 

  10. G. R. Baymuratova, A. V. Chernyak, A. A. Slesarenko, G. Z. Tulibaeva, V. I. Volkov, O. V. Yarmolenko, Russ. J. Electrochem., 2019, 55, 529; DOI: https://doi.org/10.1134/S1023193519060041.

    Article  CAS  Google Scholar 

  11. G. R. Baymuratova, A. A. Slesarenko, A. V. Yudina, O. V. Yarmolenko, Russ. Chem. Bull., 2018, 67, 1648; DOI: https://doi.org/10.1007/s11172-018-2272-7.

    Article  CAS  Google Scholar 

  12. O. V. Yarmolenko, K. G. Khatmullina, G. R. Baimuratova, G. Z. Tulibaeva, L. M. Bogdanova, A. F. Shestakov, Mendeleev Commun., 2017, 28, 41; DOI: https://doi.org/10.1016/j.mencom.2018.01.013.

    Article  Google Scholar 

  13. O. V. Yarmolenko, K. G. Khatmullina, L. M. Bogdanova, N. I. Shuvalova, E. A. Dzhavadyan, A. A. Marinin, V. I. Volkov, Russ. J. Electrochem., 2014, 50, 336; DOI: https://doi.org/10.1134/S1023193514040107.

    Article  CAS  Google Scholar 

  14. C. Capiglia, P. Mustarelli, E. Quartarone, C. Tomasi, A. Magistris, Solid State Ionics, 1999, 118, 73; DOI: https://doi.org/10.1016/S0167-2738(98)00457-3.

    Article  CAS  Google Scholar 

  15. P. Mustarelli, C. Capiglia, E. Quartarone, C. Tomasi, P. Ferloni, L. Linati, Phys. Rev. B, 1999, 60, 7228; DOI: https://doi.org/10.1103/PhysRevB.60.7228.

    Article  CAS  Google Scholar 

  16. F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. A. Hendrickson, Electrochim. Acta, 2001, 46, 2457; DOI: https://doi.org/10.1016/S0013-4686(01)00458-3.

    Article  CAS  Google Scholar 

  17. P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Albinsson, B. E. Mellander, Electrochim. Acta, 2002, 47, 3257; DOI: https://doi.org/10.1016/S0013-4686(02)00243-8.

    Article  CAS  Google Scholar 

  18. S. H. Chung, Y. Wang, S. G. Greenbaum, M. Marcinek, L. Persi, F. Croce, W. Wieczorek, B. Scrosati, J. Phys.: Condens. Matter, 2001, 13, 11763; DOI: https://doi.org/10.1088/0953-8984/13/50/336.

    CAS  Google Scholar 

  19. F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature, 1998, 394, 456; DOI: https://doi.org/10.1038/28818.

    Article  CAS  Google Scholar 

  20. Y. W. Kim, W. Lee, B. K. Choi, Electrochim. Acta, 2000, 45, 1473; DOI: https://doi.org/10.1016/S0013-4686(99)00362-X.

    Article  CAS  Google Scholar 

  21. A. S. Best, J. Adebahr, P. Jacobsson, D. R. MacFarlane, M. Forsyth, Macromolecules, 2001, 34, 4549; DOI: https://doi.org/10.1021/ma001837.

    Article  CAS  Google Scholar 

  22. C. C. Tambelli, A. C. Bloise, A. V. Rosário, E. C. Pereira, C. J. Magon, J. P. Donoso, Electrochim. Acta, 2002, 47, 1677; DOI: https://doi.org/10.1016/S0013-4686(01)00900-8.

    Article  CAS  Google Scholar 

  23. S. Indris, P. Heitjans, M. Ulrich, A. Bunde, Z. Phys. Chem., 2005, 219, 89; DOI: https://doi.org/10.1524/zpch.219.1.89.55015.

    Article  CAS  Google Scholar 

  24. Y. L. Nimah, M.-Y. Cheng, J. H. Cheng, J. Rick, B.-H. Hwang, J. Power Sources, 2015, 278, 375; DOI: https://doi.org/10.1016/j.jpowsour.2014.11.047.

    Article  CAS  Google Scholar 

  25. R. Zhou, W. Liu, X. Yao, Y. W. Leong, X. Lu, J. Mater. Chem. A, 2015, 3, 16040; DOI: https://doi.org/10.1039/C5TA02154E.

    Article  CAS  Google Scholar 

  26. S. Boor, K. Rajiv, S. S. Sekhon, Solid State Ionics, 2005, 176, 1577; DOI: https://doi.org/10.1016/j.ssi.2005.05.001.

    Article  Google Scholar 

  27. D. Kumar, M. Suleman, S. A. Hashmi, Solid State Ionics, 2011, 202, 43; DOI: https://doi.org/10.1016/j.ssi.2011.09.001.

    Article  Google Scholar 

  28. D. Kumar, S. A. Hashmi, J. Power Sources, 2010, 195, 5101; DOI: https://doi.org/10.1016/j.jpowsour.2010.02.026.

    Article  CAS  Google Scholar 

  29. Y.-S. Lee, W.-K. Shin, J. S. Kim, D.-W. Kim, RSC Adv., 2015, 5, 18359; DOI: https://doi.org/10.1039/C4RA15767B.

    Article  CAS  Google Scholar 

  30. S. Ramesh, L. C. Wen, Ionics, 2010, 16, 255; DOI: https://doi.org/10.1007/s11581-009-0388-3.

    Article  CAS  Google Scholar 

  31. B. Zhang, Y. Zhou, X. Li, J. Wang, G. Li, Q. Yun, X. Wang, Spectrochim. Acta. A, 2014, 124, 40; DOI: https://doi.org/10.1016/j.saa.2014.01.001.

    Article  CAS  Google Scholar 

  32. B. Zhang, Y. Li, B. Hou, Russ. J. Phys. Chem. A, 2017, 91, 1292; DOI: https://doi.org/10.1134/S003602441707007X.

    Article  CAS  Google Scholar 

  33. J. Stygar, G. Zukowska, W. Wieczorek, Solid State Ionics, 2005, 176, 2645; DOI: https://doi.org/10.1016/j.ssi.2005.07.006.

    Article  CAS  Google Scholar 

  34. S. Singh, N. Arora, K. Paul, R. Kumar, R. Kumar, Ionics, 2019, 25, 1495; DOI: https://doi.org/10.1007/s11581-018-2742-9.

    Article  CAS  Google Scholar 

  35. A. F. Shestakov, A. V. Yudina, G. Z. Tulibaeva, Yu. M. Shul’ga, A. A. Ignatova, O. V. Yarmolenko, Russ. J. Phys. Chem., A, 2017, 91, 1444; DOI: https://doi.org/10.1134/S0036024417080301.

    Article  CAS  Google Scholar 

  36. A. V. Chernyak, M. P. Berezin, N. A. Slesarenko, V. A. Zabrodin, V. I. Volkov, A. V. Yudina, N. I. Shuvalova, O. V. Yarmolenko, Russ. Chem. Bull., 2016, 65, 2053; DOI: https://doi.org/10.1007/s11172-016-1551-4.

    Article  CAS  Google Scholar 

  37. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  38. D. N. Laikov, J. Chem. Phys., 2011, 135, 134120; DOI: https://doi.org/10.1063/1.3646498.

    Article  Google Scholar 

  39. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yarmolenko.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1455–1462, August, 2020.

This work was carried out as part of the State Assignment (State Registration No. AAAA-A19-119071190044-3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudina, A.V., Baymuratova, G.R., Tulibaeva, G.Z. et al. Conductivity increase effect in nanocomposite polymer gel electrolytes: manifestation in the IR spectra. Russ Chem Bull 69, 1455–1462 (2020). https://doi.org/10.1007/s11172-020-2923-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2923-3

Key words

Navigation