Skip to main content
Log in

Synthesis and structure of manganese(ii) coordination polymers with 1,4-diazabicyclo[2.2.2]octane N, N′-dioxide: solvent and template effects

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New metal-organic frameworks [Mn(DMF)2(odabco)2](ClO4)2 · H2O (1), [Mn(H2O)2− (HCOO)2] · odabco (2), and [Mn(Hodabco)2(odabco)3](NO3)4 (3) were synthesized by the reaction of manganese Perchlorate with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide (odabco) in N, N-dimethylformamide (DMF) under varying reaction conditions. The reaction in N-methylpyrrolidone afforded the metal-organic framework [Mn(odabco)3](NO3)2 (4). The structures of compounds [Mn(DMF)2(odabco)2](ClO4)2 · DMF · H2O (1 · DMF · H2O), [Mn(DMF)2(odabco)2](ClO4)2 · THF (1 · THF), 2, 3, and 4 were determined by single-crystal X-ray diffraction analysis. In compounds 1 · DMF · H2O, 1 · THF, 3, and 4, odabco acts as a bridging ligand; in 2, as a guest template. Compound 1 · DMF · H2O has a layered structure and contains a system of intersecting channels occupied by perchlorate anions and disordered solvent molecules. The framework of 1 proved to be stable during the post-synthetic exchange of DMF by THF. The coordination framework of the adduct 1 · THF containing localized THF molecules has a similar structure. The layered (2) and chain-like (3) compounds are stabilized by extensive hydrogen-bonding systems, giving rise to pseudo-three-dimensional close-packed structures. The replacement of DMF by N-methylpyrrolidone under conditions similar to the synthesis of 3 affects the coordination ability of odabco and affords compound 4 having a three-dimensional framework with pcu topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Xie, W. Xu, X. Cui, Y. Wang, ChemSusChem, 2017, 10, 1645.

    Article  CAS  Google Scholar 

  2. J. H. Lee, S. Jeoung, Y. G. Chung, H. R. Moon, Coord. Chem. Rev., 2019, 389, 161.

    Article  CAS  Google Scholar 

  3. Y. He, X. Hou, Y. Liu, N. Feng, J. Mater. Chem. B, 2019, 7, 5602.

    Article  CAS  Google Scholar 

  4. Y. Hao, S. Chen, Y. Zhou, Y. Zhang, M. Xu, Nanomaterials, 2019, 9, 974.

    Article  CAS  Google Scholar 

  5. M. S. Zavakhina, D. G. Samsonenko, V. P. Fedin, Russ. Chem. Bull., 2019, 60, 279.

    CAS  Google Scholar 

  6. B. Chen, Z. Yang, Y. Zhua, Y. Xia, J. Mater. Chem. A, 2014, 2, 16811.

    Article  CAS  Google Scholar 

  7. L. M. Kustov, V. I. Isaeva, J. Prech, K. K. Bishtd, Mendeleev Commun., 2019, 29, 361.

    Article  CAS  Google Scholar 

  8. M. Barsukova, T. Goncharova, D. Samsonenko, D. Dybtsev, A. Potapov, Crystals, 2016, 6, 132.

    Article  Google Scholar 

  9. A. A. Sapianik, K. D. Smirnov, M. O. Barsukova, D. G. Samsonenko, V. P. Fedin, J. Struct. Chem., 2019, 60, 609.

    Article  CAS  Google Scholar 

  10. V. A. Bolotov, K. A. Kovalenko, D. G. Samsonenko, X. Han, X. Zhang, G. L. Smith, L. J. McCormick, S. J. Teat, S. Yang, M. J. Lennox, A. Henley, E. Besley, V. P. Fedin, D. N. Dybtsev, M. Schröder, Inorg. Chem., 2018, 57, 5074.

    Article  CAS  Google Scholar 

  11. I. S. Khan, D. G. Samsonenko, R. A. Irgashev, N. A. Kazin, G. L. Rusinov, V. N. Charushin, M. S. Zavakhina, V. P. Fedin, Polyhedron, 2018, 141, 337.

    Article  CAS  Google Scholar 

  12. A. A. Sapianik, E. E. Semenenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem., 2018, 59, 487.

    Article  CAS  Google Scholar 

  13. A. V. Desai, A. Roy, P. Samanta, B. Manna, S. K. Ghosh, iScience, 2018, 3, 21.

    Article  CAS  Google Scholar 

  14. E. A. Berdonosova, K. A. Kovalenko, E. V. Polyakova, S. N. Klyamkin, V. P. Fedin, J. Phys. Chem. C, 2015, 119, 13098.

    Article  CAS  Google Scholar 

  15. S. A. Barnett, N. R. Champness, Coord. Chem. Rev., 2003, 246, 145.

    Article  CAS  Google Scholar 

  16. O. M. Yaghi, H. Li, J. Am. Chem. Soc., 1995, 117, 10401.

    Article  CAS  Google Scholar 

  17. T. N. Sevastianova, M. Bodensteiner, A. F. Maulieva, E. I. Davydova, A. V. Virovets, E. V. Peresypkina, G. Balázs, C. Graßl, M. Seidl, M. Scheer, G. Frenking, E. A. Berezovskaya, I. V. Kazakov, O. V. Khoroshilova, A. Y. Timoshkin, Dalton Trans., 2015, 44, 20648.

    Article  CAS  Google Scholar 

  18. C. J. Höller, M. Mai, C. Feldmann, K. Müller-Buschbaum, Dalton Trans., 2010, 39, 461.

    Article  Google Scholar 

  19. D.-L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schroder, Angew. Chem., Int. Ed., 2001, 40, 2443.

    Article  Google Scholar 

  20. D.-L. Long, A. J. Blake, N. R. Champness, M. Schröder, Chem. Commun., 2000, 1369.

  21. D.-L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, C. Wilson, M. Schröder, Chem. Eur. J., 2005, 11, 1384.

    Article  CAS  Google Scholar 

  22. J. López-Cabrelles, G. Minguez Espallargas, E. Coronado, Polymers, 2016, 8, 171.

    Article  Google Scholar 

  23. L. Chen, Q. Ji, X. Wang, Q. Pan, X. Cao, G. Xu, CrystEngComm, 2017, 19, 5907.

    Article  CAS  Google Scholar 

  24. F.-X. Sun, G.-S. Zhu, Q.-R. Fang, S.-L. Qiu, Inorg. Chem. Comm., 2007, 10, 649.

    Article  CAS  Google Scholar 

  25. B. Zheng, J. Luo, F. Wang, Y. Peng, G. Li, Q. Huo, Y. Liu, Gryst. Growth. Des., 2013, 13, 1033

    Article  CAS  Google Scholar 

  26. H. Reinsch, D. de Vos, Microporous, Mesoporous Mater., 2014, 200, 311.

    Article  CAS  Google Scholar 

  27. H. Reinsch, R. S. Pillai, R. Siegel, J. Senker, A. Lieb, G. Maurin, N. Stock, Dalton Trans., 2016, 45, 4178.

    Article  Google Scholar 

  28. C. X. Bezuidenhout, V. J. Smith, C. Esterhuysen, L. J. Barbour, J. Am. Chem. Soc., 2017, 139, 5923.

    Article  CAS  Google Scholar 

  29. P. A. Demakov, S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2018, 67, 490.

    Article  CAS  Google Scholar 

  30. S. N. Zhao, G. Wang, D. Poelman, P. V. Voort, Materials, 2018, 11, E572.

    Article  Google Scholar 

  31. Z.-Y. Li, Y.-Q. Cao, X.-M. Zhang, Y.-L. Xu, G.-X. Cao, F.-L. Zhang, S.-Z. Li, F.-Q. Zhanga, B. Zhai, New J. Chem., 2017, 41, 457.

    Article  CAS  Google Scholar 

  32. V. Pascanu, G. González Miera, A. Ken Inge, B. Martín-Matute, J. Am. Chem. Soc., 2019, 141, 7223.

    Article  CAS  Google Scholar 

  33. P. K. Hon, T. C. W. Mak, J. Crystallogr. Spectrosc. Res., 1987, 17, 419.

    Article  CAS  Google Scholar 

  34. A. L. Spek, Acta Crystallogr., 2015, C71, 9.

    Google Scholar 

  35. E. V. Savinkina, I. A. Zamilatskov, E. A. Buravlev, D. V. Albov, A. Yu. Tsivadze, Mendeleev Commun., 2008, 18, 92.

    Article  CAS  Google Scholar 

  36. P. Samarasekere, X. Wang, A. J. Jacobson, J. Tapp, A. Möller, Inorg. Chem., 2014, 53, 244.

    Article  CAS  Google Scholar 

  37. CrysAlisPro 1.171.38.46. Rigaku Oxford Diffraction. 2015.

  38. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3.

    Google Scholar 

  39. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Fedin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. M. Muzafarov on the occasion of his 70th birthday. Based on the materials of the International Conference “Chemistry of Organoelement Compounds and Polymers 2019” (November 18–22, 2019, Moscow, Russia).

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1511–1519, August, 2020.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 19-43-543016) and the Government of the Novosibirsk Region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demakov, P.A., Romanov, A.S., Samsonenko, D.G. et al. Synthesis and structure of manganese(ii) coordination polymers with 1,4-diazabicyclo[2.2.2]octane N, N′-dioxide: solvent and template effects. Russ Chem Bull 69, 1511–1519 (2020). https://doi.org/10.1007/s11172-020-2930-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2930-4

Key words

Navigation