Skip to main content

Advertisement

Log in

Current achievements and future prospects of genetic engineering in Indian mustard (Brassica juncea L. Czern & Coss.)

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Transgenic technology in Indian mustard has expedited crop improvement programs. Further, there is a need to optimize gene editing protocols and find out the suitable target genes to harvest the benefits of gene editing technology in this important edible oilseed crop.

Abstract

Brassica juncea is an economically and industrially important oilseed crop being grown mainly in India and in some parts of Canada, Russia, China and Australia. Besides being consumed as edible oil, it also has numerous applications in food and paint industry. However, its overall production and productivity are being hampered by a number of biotic and abiotic stress factors. Further, its oil and seedmeal quality needs to be improved for increasing food as well as feed value. However, the lack of resistant crossable germplasm or varieties necessitated the use of genetic engineering interventions in Indian mustard crop improvement. A number of genes conferring resistance to biotic stresses including lectins for aphids’ control, chitinase, glucanase and osmotin for disease control and for abiotic stresses, CODA, LEA and ion antiporter genes have been transferred to Indian mustard. Both antisense and RNAi technologies have been employed for improving oil and seedmeal quality. Efforts have been made to improve the phytoremediation potential of this crop through genetic engineering approach. The deployment of barnase/barstar gene system for developing male sterile and restorer lines has really expedited hybrid development programs in Indian mustard. Further, there is a need to optimize gene editing protocols and to find out suitable target genes for gene editing in this crop. In this review paper, authors have attempted to review various genetic transformation efforts carried out in Indian mustard for its improvement to combat biotic and abiotic stress challenges, quality improvement and hybrid development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmad B, Ambreen, Khan MS, Haiser A, Khan I (2015) Agrobacterium mediated transformation of Brassica juncea (L.) Czern. with chitinase gene conferring resistance against fungal infections. Pak J Bot 47(1):211–216

  • Ahmed I, Yadav D, Shukla P, Vineeth TV, Sharma PC, Kirti PB (2017) Constitutive expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and glucose and ABA insensitivity in mustard transgenic plants. Plant Sci 265:12–28

    CAS  PubMed  Google Scholar 

  • Aionesei T, Hosp J, Voronin V, Heberle-Bors E (2006) Methotrexate is a new selectable marker for tobacco immature pollen transformation. Plant Cell Rep 25:410–416

    CAS  PubMed  Google Scholar 

  • Akmal A, Kiran U, Ali A, Abdin MZ (2014) Enhanced nitrogen assimilation in transgenic mustard (Brassica juncea L.) overexpressing high affinity sulfate transporter gene. Indian J Biotech 13:381–387

    CAS  Google Scholar 

  • Akter S, Mollika SR, Sarker RH, Hoque MI (2016) Agrobacterium-mediated genetic transformation of two varieties of Brassica juncea(L.) using marker genes. Plant Tissue Cult Biotech 26(1):55–65

  • Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A (2017) Overexpression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front Plant Sci 8:1693. https://doi.org/10.3389/fpls.2017.01693

    Article  PubMed  PubMed Central  Google Scholar 

  • Aminedi R, Dhatwalia D, Jain V, Bhattacharya RC (2019) High efficiency in planta transformation of Indian mustard (Brassica juncea) based on spraying of floral buds. Plant Cell Tiss Org Cult 138:22–237. https://doi.org/10.1007/s11240-019-01618-2

    Article  Google Scholar 

  • Arora H, Lakshmi Padmaja K, Paritosh K, Mukhi N, Tewari AK, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2019) BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theor Appl Genet 132:2223–2236

    CAS  PubMed  Google Scholar 

  • Arumugam N, Gupta V, Jagannath A et al (2007) A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre-loxP system. Transgenic Res 16:703–712. https://doi.org/10.1007/s11248-006-9058-7

    Article  CAS  PubMed  Google Scholar 

  • Augustine R, Bisht NC (2013) Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Sci Rep 5:18005. https://doi.org/10.1038/srep18005

    Article  CAS  Google Scholar 

  • Augustine R, Mukhopadhyay A, Bisht NC (2013) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnol J 11:855–866. https://doi.org/10.1111/pbi.12078

    Article  CAS  PubMed  Google Scholar 

  • Awasthi RP, Nashaat NI, Kolte SJ, Tewari AK, Meena PD, Bhatt R (2012) Screening of putative resistant sources against Indian and exotic isolates of Albugo candida inciting white rust in rapeseed mustard. J Oilseed Brassica 3:27–37

    Google Scholar 

  • Bala A, Roy A, Das A, Chakraborti D, Das S (2013) Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination. BMC Biotechnol 13:88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bangash SAK, Khan MS, Ambreen KSH, Siddique AN (2013) Genetic transformation of Brassica juncea with an antimicrobial Wasabi defensin gene. Pak J Bot 45(3):993–998

    Google Scholar 

  • Bansal KC, Tayal D, Dalal M, Chinnusamy V, Singh AK, Shanker S (2007) Gene cloning and transgenic development in Indian mustard (Brassica juncea L. Czern) for improved tolerance to abiotic stresses. Biotechnol Genom Appl 38–41

  • Barfield DG, Pua EC (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens- mediated genetic transformation. Plant Cell Rep 10:308–314

    CAS  PubMed  Google Scholar 

  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011a) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue Org Cult 107:69–77. https://doi.org/10.1007/s11240-011-9958-y

    Article  CAS  Google Scholar 

  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Song WY, Lee Y, Lim YP, Liu JR (2011b) Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tiss Organ Cult 105:85–91

    CAS  Google Scholar 

  • Bisht NC, Burma PK, Pental D (2004a) Development of 2,4-D-resistant transgenics in Indian oilseed mustard (Brassica juncea). Curr Sci 87(3):367–370

    CAS  Google Scholar 

  • Bisht NC, Jagannath A, Burma PK, Pradhan AK, Pental D (2007) Retransformation of a male sterile barnase line with the barstar gene as an efficient alternative method to identify male sterile-restorer combinations for heterosis breeding. Plant Cell Rep 26:727–733. https://doi.org/10.1007/s00299-006-0274-7

    Article  CAS  PubMed  Google Scholar 

  • Bisht NC, Jagannath A, Gupta V, Burma PK, Pental D (2004b) A two gene – two promoter system for enhanced expression of a restorer gene (barstar) and development of improved fertility restorer lines for hybrid seed production in crop plants. Mol Breeding 14:129–144

    CAS  Google Scholar 

  • Borhan MH, Holub EB, Kindrachuk C et al (2010) WRR4, a broad spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed brassica crops. Mol Plant Pathol 11:283–291. https://doi.org/10.1111/j.1364-3703.2009.00599.x

    Article  CAS  PubMed  Google Scholar 

  • Bose S, Gangopadhyay G, Sikdar SR (2019) Rorippa indica HSPRO2 expression in transgenic Brassica juncea induces tolerance against mustard aphid Lipaphis erysimi. Plant Cell Tiss Org Cult 136:431–443. https://doi.org/10.1007/s11240-018-1524-4

    Article  CAS  Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner KH (2000) Vitamin E. J Sci Food Agric 80:913–938

    CAS  Google Scholar 

  • Chauhan JS, Singh KH, Singh VV, Satyanshu K (2011) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sci 81(12):1093–1109

    Google Scholar 

  • Chhikara S, Chaudhury D, Dhankher OP, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tiss Organ Cult 108:83–89. https://doi.org/10.1007/s11240-011-0015-7

    Article  CAS  Google Scholar 

  • Choudhary RS, Kunchge N, Patil AS (2015) RNAi gene validation in mustard [Brassica juncea L.] using Agrobacterium-mediated transformation method. Multilogic Sci 5(13)

  • Das A, Ghosh P, Das S (2018) Expression of Colocasia esculenta tuber agglutinin in Indian mustard provides resistance against Lipaphis erysimi and the expressed protein is non-allergenic. Plant Cell Rep 37:849–863. https://doi.org/10.1007/s00299-018-2273-x

    Article  CAS  PubMed  Google Scholar 

  • Das B, Goswami L, Ray S, Ghosh S, Bhattacharyya S, Das S, Majumder AL (2006) Agrobacterium-mediated transformation of Brassica juncea with a cyanobacterial (Synechocystis PCC6803) delta-6 desaturase gene leads to production of gamma-linolenic acid. Plant Cell Tiss Organ Cult 86:219–231. https://doi.org/10.1007/s11240-006-9111-5

    Article  CAS  Google Scholar 

  • Dutta I, Majumder P, Saha P, Ray K, Das S (2005) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci 169:996–1007. https://doi.org/10.1016/j.plantsci.2005.05.016

    Article  CAS  Google Scholar 

  • Dutta I, Saha P, Das S (2008) Efficient Agrobacterium-mediated genetic transformation of oilseed mustard [Brassica juncea (L.) Czern.] using leaf piece explants. Vitro Cell Dev Biol-Plant 44:401–411. https://doi.org/10.1007/s11627-008-9150-1

    Article  CAS  Google Scholar 

  • Gao J, Lan T (2016) Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 6:19467. https://doi.org/10.1038/srep19467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369. https://doi.org/10.1007/s11103-007-9158-7

    Article  CAS  PubMed  Google Scholar 

  • Gautam R, Shukla P, Kirti PB (2019) Targeted expression of a cysteine protease (AdCP) in tapetum induces male sterility in Indian mustard, Brassica juncea. Funct Integ Genom 19:703–714. https://doi.org/10.1007/s10142-019-00674-3

    Article  CAS  Google Scholar 

  • Grover A, Pental D (2003) Breeding objectives and requirements for producing transgenics for major field crops of India. Curr Sci 84:310320

    Google Scholar 

  • Hong H, Datla N, Darwin WR, Patrick SC, Samuel LM, Xiao Q (2002) High-level production of γ-linolenic acid in Brassica juncea using a Δ6-desaturase from Pythium irregulare. Plant Physiol 129:354–362. https://doi.org/10.1104/pp.001495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83. https://doi.org/10.1146/annurev.ento.54.110807.090623

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006) Transgenic expression of onion leaf lectin gene in Indian Mustard offers protection against aphid colonization. Crop Sci 46:2022–2032. https://doi.org/10.2135/cropsci2005.11.0418

    Article  CAS  Google Scholar 

  • Huysen TV, Hale SAKL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-c-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78. https://doi.org/10.1007/s00425-003-1070-z

    Article  CAS  PubMed  Google Scholar 

  • Jagannath A, Arumugam N, Gupta V, Pradhan A, Burma PK, Pental D (2002) Development of transgenic barstar lines and identification of male sterile (barnase)/restorer (barstar) combination for heterosis breeding in Indian oilseed mustard (Brassica juncea). Curr Sci 82:46–52

    CAS  Google Scholar 

  • Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Burma PK, Pental D (2001) The use of a spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breeding 8:11–23

    CAS  Google Scholar 

  • Jha JK, Sinha S, Maiti MK, Basu A, Mukhopadhyay UK, Sen SK (2007) Functional expression of an acyl carrier protein (ACP) from Azospirillum brasilense alters fatty acid profiles in Escherichia coli and Brassica juncea. Plant Physiol Biochem 45:490–500

    CAS  PubMed  Google Scholar 

  • Kajla S, Mukhopadhyay A, Pradhan AK (2017) Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes. PLoS ONE 12(8):e0182747. https://doi.org/10.1371/journal.pone.0182747

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamble S, Hadapad AB, Eapen S (2013) Evaluation of transgenic lines of Indian mustard (Brassica juncea L. Czern and Coss) expressing synthetic cry1Ac gene for resistance to Plutella xylostella. Plant Cell Tiss Organ Cult 115:321–328. https://doi.org/10.1007/s11240-013-0364-5

    Article  CAS  Google Scholar 

  • Kanrar S, Venkateshwari J, Kirti PB, Chopra VL (2002) Transgenic Indian mustard (Brassica juncea) with resistance to mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20:976–981. https://doi.org/10.1007/s00299-001-0422-z

    Article  CAS  Google Scholar 

  • Kanrar S, Venkateswari J, Dureja P, Kirti PB, Chopra VL (2006) Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FATTY ACID ELONGATION1 (BjFAE1) gene. Plant Cell Rep 25:148–155. https://doi.org/10.1007/s00299-005-0068-3

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490. https://doi.org/10.1042/BST20130242

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Shekhar S, Bisht S, Kumar V, Varma A (2015) Ectopic overexpression of lectin in transgenic Brassica juncea plants exhibit resistance to fungal phytopathogen and showed alleviation to salt and drought stress. J Bioengineer Biomed Sci 5:147. https://doi.org/10.4172/2155-9538.1000147

    Article  CAS  Google Scholar 

  • Lone JA, Gupta SK, Wani SH, Sharma M, Ahmad lone R, Shikari AB, (2017) Efficient callus induction and regeneration in Brassica juncea for environment friendly agriculture. Int J Pure App Biosci 5(1):135–141

    Google Scholar 

  • Machado RUA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30. https://doi.org/https://doi.org/10.3390/horticulturae3020030

  • Martinez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I (2009) Characterization of the entire cystatin gene family in barley and their target Cathepsin L-like Cysteine-Proteases, partners in the hordein mobilization during seed germination. Plant Physiol 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews H, Rao PS, Bhatia CR (1986) Transformation of Brassica juncea by Agrobacterium tumefaciens harbouring plasmid pTiT37 and its 'rooty' mutant pTiT37.14a/a. J Genet 65(1&2):37–44

  • Meena PD, Awasthi RP, Chattopadhyay C, Kolte SJ, Kumar A (2010) Alternaria blight: a chronic disease in rapeseed-mustard. J Oilseed Brassica 1:1–11

    Google Scholar 

  • Meena PD, Verma PR, Saharan GS, Borhan MH (2014) Historical perspectives of white rust caused by Albugo candida in oilseed Brassica. J Oilseed Brassica 5:1–41

    Google Scholar 

  • Mehra S, Pareek A, Bandyopadhyay P, Sharma P, Burma PK, Pental D (2000) Development of transgenics in Indian oilseed mustard (Brassica juncea) resistant to herbicide phosphinothricin. Curr Sci 78:358–1364

    Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2006) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    PubMed  Google Scholar 

  • Mondal KK, Chatterjee SC, Viswakarma N, Bhattacharya RC, Grover A (2003) Chitinase mediated inhibitory activity of Brassica transgenic on growth of Alternaria brassicae. Curr Microbiol 47:171–173

    CAS  PubMed  Google Scholar 

  • Murovec J, Bohanec, B (2011) Haploids and doubled haploids in plant breeding. In: IY Abdurakhmonov, Ed., Plant Breeding. InTech2012. https://doi.org/https://doi.org/10.5772/29982

  • Naeem I, Munir TP, Durrette, et al (2020) Feasible regeneration and Agrobacterium-mediated transformation of Brassica juncea with Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene. Saudi J Biol Sci 27:1324–1332. https://doi.org/10.1016/j.sjbs.2019.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirupa N, Prasad MNV, Jami SK, Kirti PB (2007) Optimization of Agrobacterium-mediated overexpression of osmotin-ferritin genes in Brassica juncea. Transgenic Plant J 1(2):384–392

    Google Scholar 

  • Pandian A, Hurlstone C, Liu Q, Singh S, Salisbury P, Green A (2006) Agrobacterium-mediated transformation protocol to overcome necrosis in elite Australian Brassica juncea lines. Transgenic Plant J 24:103

    Google Scholar 

  • Pental D, Pradhan AK, Sodhi SY, Mukhopadhyay A (1993) Variations among Brassica juncea cultivars for regeneration from hypocotyl explants and optimization of conditions for Agrobacterium mediated genetic transformation. Plant Cell Rep 12:462–467. https://doi.org/10.1007/BF00234713

    Article  CAS  PubMed  Google Scholar 

  • Prasad KVSK, Saradhi PP (2004) Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Sci 166(5):1197–1212. https://doi.org/10.1016/j.plantsci.2003.12.031

    Article  CAS  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breeding 6(5):489–499

  • Premi OP, Kandpal BK, Rathore SS, Shekhawat K, Chauhan JS (2013) Green manuring, mustard residue recycling and fertilizer application affects productivity and sustainability of Indian mustard (Brassica juncea L.) in Indian semi-arid tropics. Ind Crop Prod 41:423–429

    Google Scholar 

  • Pua EC (1994) Expression variability of marker genes during plant regeneration from protoplasts of R1 transgenic mustard (Brassica juncea) via somatic embryogenesis. J Plant Physiol 143:363–371

    CAS  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breeding 19:137–151

    CAS  Google Scholar 

  • Rajwanshi R, Kumar D, Yusuf MA, DebRoy S, Sarin NB (2016) Stress-inducible overexpression of glyoxalase I is preferable to its constitutive overexpression for abiotic stress tolerance in transgenic Brassica juncea. Mol Breeding 36(6):1–15

    CAS  Google Scholar 

  • Rani S, Sharma V, Hada A, Bhattacharya RC, Koundal KR (2017a) Fusion gene construct preparation with lectin and protease inhibitor genes against aphids and efficient genetic transformation of Brassica juncea using cotyledons explants. Acta Physiol Plant 39:115. https://doi.org/10.1007/s11738-017-2415-8

    Article  CAS  Google Scholar 

  • Rani S, Sharma V, Hada A, Koundal KR (2017b) Efficient genetic transformation of Brassica juncea with lectin using cotyledons explants. Intl J Adv Biotechnol Res 7(1):1–12

    CAS  Google Scholar 

  • Rao B, Rao V, Nair L, Prasad Y, Ramaragan A, Chattopadhyay C (2014) Mustard aphid infestation in India: development of forewarning models. J Environ Biol 35:683–688

    PubMed  Google Scholar 

  • Ray Ravi M, Chan SWL (2010) Haploid plants produced by centromere mediated genome elimination. Nature 464:615–618. https://doi.org/10.1038/nature08842

    Article  CAS  Google Scholar 

  • Ray K, Bisht NC, Pental D, Burma PK (2007) Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide 'Pursuit. Curr Sci 93(10):1390–1396

  • Ray K, Jagannath A, Gangwani SA, Burma PK, Pental D (2004) Mutant acetolactate synthase gene is an efficient in vitro selectable marker for the genetic transformation of Brassica juncea (oilseed mustard). J Plant Physiol 161:1079–1083

    CAS  PubMed  Google Scholar 

  • Redden R, Vardy M, Edwards D, Raman H, Batley J (2009) Genetic and morphological diversity in the Brassicas and wild relative. In: 16th Australian research assembly on Brassicas, Ballarat, Victoria. Retrieved from https://www.cropwildrelatives.org/fileadmin/www.cropwildrelaves.org/documents/Diversity%2520in%2520Brassica%2520CWR.pdf

  • Reisinger S, Schiavon M, Terry N, PilonSmits EAH (2008) Heavy metal tolerance and accumulation in Indian Mustard (Brassica juncea L.) expressing bacterial γ-glutamylcysteine synthetase or glutathione synthetase. Intl J Phytoremediation 10(5):440–454. https://doi.org/10.1080/15226510802100630

  • Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB (2014) Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Mol Biotechnol 56:535–545. https://doi.org/10.1007/s12033-013-9727-8

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Mishra S, Awasthi JP, Sahoo L, Panda SK (2016) Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). Environ Exp Bot 128:99–111

    CAS  Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and management. Springer, New Delhi

    Google Scholar 

  • Sahni S, Ganie SH, Narula A, Srivastava PS, Singh HB (2013) Ectopic expression of Atleafy in Brassica juncea cv. Geeta for early flowering. Physiol Mol Biol Plants 19(3):455–459. https://doi.org/10.1007/s12298-013-0180-8

  • Sarkar P, Jana K, Sikdar SR (2014) Overexpression of biologically safe Rorippa indica defensin enhances aphid tolerance in Brassica juncea. Planta 246:1029–1044

    Google Scholar 

  • Saxena M, Roy SD, Singla-Pareek SL, Sopory SK, Bhalla-Sarin N (2011) Overexpression of the glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Sci J 5:23–28

    CAS  Google Scholar 

  • Sharma M, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2016) BjuB.CYP79F1 regulates synthesis of propyl fraction of aliphatic glucosinolates in oilseed mustard Brassica juncea: functional validation through genetic and transgenic approaches. PLoSONE 11(2):e0150060. https://doi.org/10.1371/journal.pone.0150060

  • Sharma M, Sahni R, Kansal R, Kaundal KR (2004) Transformation of oilseed mustard Brassica juncea (L.) Czern & Coss cv. Pusajaikisan with snowdrop lectin gene. Indian J Biotech 3:97–102

    CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Shmykova NA, Shumilina DV, Suprunova TP (2016) Doubled haploid production in Brassica L. species. Russian J Genet: Appl Res. 6(1):68–77

  • Singh VV, Verma V, Pareek AK, Mathur M, Yadav R, Goyal P, Thakur AK, Singh YP, Koundal KR, Bansal KC, Mishra AK, Kumar A, Kumar S (2010) Optimization and development of regeneration and transformation protocol in Indian mustard using lectin gene from chickpea [Cicer arietinum(L.)]. J Plant Breeding Crop Sci 1(9): 306–310

  • Sinha S, Jha JK, Maiti MK, Basu A, Mukhopadhyay UK, Sen SK (2007) Metabolic engineering of fatty acid biosynthesis in Indian mustard (Brassica juncea) improves nutritional quality of seed oil. Plant Biotechnol Rep 1:185–197. https://doi.org/10.1007/s11816-007-0032-5

    Article  Google Scholar 

  • Sivaraman I, Amurugam N, Sodhi SY, Gupta V, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D (2004) Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breeding 13:365–375. https://doi.org/10.1023/B:MOLB.0000034092.47934.d6

    Article  CAS  Google Scholar 

  • Soda N, Wallace S, Karan R (2015) Omics study for abiotic stress responses in plants. Adv Plant Agric Res 2(1):00037. https://doi.org/10.15406/apar.2015.02.00037

  • Taj G, Kumar A, Bansal KC, Garg GK (2004) Introgression of osmotin gene for creation of resistance against Alternaria blight by perturbation of cell cycle machinery. Indian J Biotech 3:291–298

    CAS  Google Scholar 

  • Tasleem M, Baunthiyal M, Kumar A, Taj G (2017) Determination of antioxidant activity in overexpressed MPK3 transgenic Brassica juncea for induction of defense against Alternaria blight disease. J Pharmacognosy Phytochem 6(6):2579–2582

    CAS  Google Scholar 

  • Thakur AK, Singh BK, Verma V, Chauhan JS (2013) Direct organogenesis in Brassica juncea var. NRCDR-2 from cotyledonary petiole explantsand analysis of genetic uniformity using RAPD markers. Natl Acad Sci Lett 36(4):403–409

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Sci 327:818–822

    CAS  Google Scholar 

  • Thakur AK, Singh BK, Verma V, Chauhan JS (2013) Direct organogenesis in Brassica juncea var. NRCDR-2 and analysis of genetic uniformity using RAPD markers. Natl Acad Sci Lett 36:403–409

    CAS  Google Scholar 

  • Tiwari T, Kumar K, Sneha S (2019) Efficient regeneration protocol from cotyledonary petiole explant of Brassica juncea var. NRCHB 101. Int J Curr Res 11(3):2329–2331

  • Trivedi N, Dubey A (2014) Efficient callus regeneration and multiple shoot induction in Brassica juncea var. Pusa Jaikisan Res J Recent Sci 3:16–19

    Google Scholar 

  • Verma SS, Sinha RK, Jajoo A (2015) (E)-b-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines. Plant Signal Behav 10(7):e1042636. https://doi.org/10.1080/15592324.2015.1042636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li Y, Liang C (2008) Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea. Plant Signal Behav. https://doi.org/10.1007/s11248-007-9115-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts A, Bhadouria J, Kumar V, Bhat SR (2016) Assessment of Arabidopsis thaliana CENH3 promoter in Brassica juncea for development of haploid inducer lines. Ind J Exp Biol 54:425–430

    Google Scholar 

  • Watts A, Kumar V, Raipuria RK, Bhattacharya RC (2018) In vivo haploid production in crop plants: methods and challenges. Plant Mol Biol Rep 36:685–694. https://doi.org/10.1007/s11105-018-1132-9

    Article  CAS  Google Scholar 

  • Yadav R C, Kamada H, Kikuchi F (1991) Genotypic and media effects on plant regeneration from cotyledonary explants of Brassica juncea (L.) Coss & Czern. Ann Biol 7(2):119–124

  • Yao K, Bacchetto RG, Lockhart KM, Friesen LJ, Potts DA, Covello PS, Taylor DC (2003) Expression of the Arabidopsis ADS1 gene in Brassica juncea results in a decreased level of total saturated fatty acids. Plant Biotechnol J 1:221–229

    CAS  PubMed  Google Scholar 

  • Yusuf MA, Kumar D, Tajwanshi R, Strasser RJ, Tsimilli-Michael M, Govingjee, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta (BBA) - Bioenergetics 8:1428–1438

  • Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Trans Res 16:109–113. https://doi.org/10.1007/s11248-006-9028-0

    Article  CAS  Google Scholar 

  • Zhao SJ, Zhang ZC, Gao X, Toshun G, Qiu B-S (2009) Plant regeneration of the mining ecotype Sedum alfredii and cadmium hyperaccumulation in regenerated plants. Plant Cell Tiss Organ Cult 99:9–16

    CAS  Google Scholar 

  • Zhu YL, Elizabeth AH, Pilon-Smits Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthase. Plant Physiol 121:1169–1177. https://doi.org/10.1104/pp.121.4.1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, ICAR-DRMAR, Bharatpur for funding the work in the form of an institute project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Thakur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A.K., Parmar, N., Singh, K.H. et al. Current achievements and future prospects of genetic engineering in Indian mustard (Brassica juncea L. Czern & Coss.). Planta 252, 56 (2020). https://doi.org/10.1007/s00425-020-03461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03461-8

Keywords

Navigation