Skip to main content
Log in

Bridging the GAPs in plant reproduction: a comparison of plant and animal GPI-anchored proteins

  • Review
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Key message

Glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) are a unique type of membrane-associated proteins in eukaryotes. GPI and GAP biogenesis and function have been well studied in non-plant models and play an important role in the fertility of mouse sperm and egg. Although GPI and GAP biogenesis and function in plants are less known, they are critical for flowering plant reproduction because of their essential roles in the fertility of the male and female gametophytes.

Abstract

In Eukaryotes, GPI, a glycolipid molecule, can be post-translationally attached to proteins to serve as an anchor in the plasma membrane. GPI-anchoring, compared to other modes of membrane attachment and lipidation processes, localizes proteins to the extracellular portion of the plasma membrane and confers several unique attributes including specialized sorting during secretion, molecular painting onto membranes, and enzyme-mediated release of protein through anchor cleavage. While the biosynthesis, structure, and role of GPI are mostly studied in mammals, yeast and protists, the function of GPI and GAPs in plants is being discovered, particularly in gametophyte development and function. Here, we review GPI biosynthesis, protein attachment, and remodeling in plants with insights about this process in mammals. Additionally, we summarize the reproductive phenotypes of all loss of function mutations in Arabidopsis GPI biosynthesis and GAP genes and compare these to the reproductive phenotypes seen in mice to serve as a framework to identify gaps in our understanding of plant GPI and GAPs. In addition, we present an analysis on the gametophyte expression of all Arabidopsis GAPs to assist in further research on the role of GPI and GAPs in all aspects of the gametophyte generation in the life cycle of a plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Garcia G, Vielle-Calzada JP (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG, Primakoff P (2003) Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J Cell Sci 116:2149–2155

    Article  CAS  PubMed  Google Scholar 

  • Baba D, Kashiwabara S, Honda A, Yamagata K, Wu Q, Ikawa M, Okabe M, Baba T (2002) Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg. J Biol Chem 277:30310–30314

    Article  CAS  PubMed  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A et al (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a Web-based database. Plant Physiol 132:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benghezal M, Benachour A, Rusconi S, Aebi M, Conzelmann A (1996) Yeast Gpi8p is essential for GPI anchor attachment onto proteins. Embo J 15:6575–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borner GHH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Brewis IA, Ferguson MAJ, Mehlert A, Turner AJ, Hooper NM (1995) Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase—comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem 270:22946–22956

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of Gpi-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell-surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Bundy MG, Kosentka PZ, Willet AH, Zhang L, Miller E, Shpak ED (2016) A mutation in the catalytic subunit of the glycosylphosphatidylinositol transamidase disrupts growth, fertility, and stomata formation. Plant Physiol 171:974–985

    PubMed  PubMed Central  Google Scholar 

  • Capron A, Gourgues M, Neiva LS, Faure JE, Berger F, Pagnussat G, Krishnan A, Alvarez-Mejia C, Vielle-Calzada JP, Lee YR et al (2008) Maternal control of male-gamete delivery in arabidopsis involves a putative gpi-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot 60:3133–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai XR, Gao XQ, Chen GH, Tang LL, Wang H, Zhang XS (2014) ABNORMAL POLLEN TUBE GUIDANCE1, an endoplasmic reticulum-localized mannosyltransferase homolog of Glycosylphosphatidylinositol10 in Yeast and phosphatidylinositol glycan anchor biosynthesis B in human, is required for arabidopsis pollen tube micropylar guidance and embryo development. Plant Physiol 165:1544–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demesa-Arevalo E, Vielle-Calzada JP (2013) The classical arabinogalactan protein agp18 mediates megaspore selection in arabidopsis. Plant Cell 25:1274–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desnoyer N, Howard G, Jong E, Palanivelu R (2020) AtPIG-S, a predicted Glycosylphosphatidylinositol Transamidase subunit, is critical for pollen tube growth in Arabidopsis. BMC Plant Biol 20:380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan QH, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5:1–10

    Google Scholar 

  • Edstam MM, Edqvist J (2014) Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana. Physiol Plantarum 152:32–42

    Article  CAS  Google Scholar 

  • Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence-and genome-wide studies for arabidopsis and rice. Plant Physiol 133:1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhaber B, Eisenhaber S, Kwang TY, Gruber G, Eisenhaber F (2014) Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Cell Cycle 13:1912–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteom 2:1261–1270

    Article  CAS  Google Scholar 

  • Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nuhse TS, Brodbeck U, Peck SC, Jensen ON (2006) Modification-specific proteomics of plasma membrane proteins: Identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. J Proteom Res 5:935–943

    Article  CAS  Google Scholar 

  • Feng HQ, Liu C, Fu R, Zhang MM, Li H, Shen LP, Wei QQ, Sun X, Xu L, Ni B et al (2019) Lorelei-like GPI-anchored proteins 2/3 regulate pollen tube growth as chaperones and coreceptors for anxur/bups receptor kinases in arabidopsis. Mol Plant 12:1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Fujihara Y, Ikawa M (2016) GPI-AP release in cellular, developmental, and reproductive biology. J Lipid Res 57:538–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujihara Y, Okabe M, Ikawa M (2014) GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod 90:60

    PubMed  Google Scholar 

  • Fujita M, Kinoshita T (2010) Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett 584:1670–1677

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Kinoshita T (2012) GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821:1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Maeda Y, Ra M, Yamaguchi Y, Taguchi R, Kinoshita T (2009) GPI Glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell 139:352–365

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T (2011) Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J Cell Biol 194:61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraering P, Imhof I, Meyer U, Strub JM, van Dorsselaer A, Vionnet C, Conzelmann A (2001) The GPI transamidase complex of Saccharomyces cerevisiae contains Gaa1p, Gpi8p, and Gpi16p. Mol Biol Cell 12:3295–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo-Trigo S, Blanco-Tourinan N, DeFalco TA, Wells ES, Gray JE, Zipfel C, Smith LM (2019) CrRLK1L receptor-like kinases HERK1 and ANJEA are female determinants of pollen tube reception. Embo Rep 21(2):e48466

    PubMed  PubMed Central  Google Scholar 

  • Gamage DG, Hendrickson TL (2013) GPI transamidase and GPI anchored proteins: oncogenes and biomarkers for cancer. Crit Rev Biochem Mol Biol 48:446–464

    Article  CAS  PubMed  Google Scholar 

  • Gamage DG, Varma Y, Meitzler JL, Morissette R, Ness TJ, Hendrickson TL (2017) The soluble domains of Gpi8 and Gaa1, two subunits of glycosylphosphatidylinositol transamidase (GPI-T), assemble into a complex. Arch Biochem Biophys 633:58–67

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Zhang YH, Wang WL, Zhao KK, Liu CM, Bai L, Li R, Guo Y (2017) Two membrane-anchored aspartic proteases contribute to pollen and ovule development. Plant Physiol 173:219–239

    Article  CAS  PubMed  Google Scholar 

  • Ge Z, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q et al (2019a) LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate arabidopsis pollen tube integrity. Curr Biol 29(3256–3265):e3255

    Google Scholar 

  • Ge ZX, Dresselhaus T, Qu LJ (2019b) How CrRLK1L receptor complexes perceive RALF signals. Trends Plant Sci 24:978–981

    Article  CAS  PubMed  Google Scholar 

  • Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T, Poindexter P, Somerville C (2005) Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell 17:1128–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE, Smithies O, Krege JH, O'Brien DA (1998) Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci USA 95:2552–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemsley PA (2015) The importance of lipid modified proteins in plants. New Phytol 205:476–489

    Article  CAS  PubMed  Google Scholar 

  • Hereld D, Krakow JL, Bangs JD, Hart GW, Englund PT (1986) A phospholipase-C from trypanosoma-brucei which selectively cleaves the glycolipid on the variant surface glycoprotein. J Biol Chem 261:3813–3819

    Article  Google Scholar 

  • Homans SW, Ferguson MAJ, Dwek RA, Rademacher TW, Anand R, Williams AF (1988) Complete structure of the glycosyl phosphatidylinositol membrane anchor of Rat-Brain Thy-1 glycoprotein. Nature 333:269–272

    Article  CAS  PubMed  Google Scholar 

  • Hong YJ, Ohishi K, Kang JY, Tanaka S, Inoue N, Nishimura J, Maeda Y, Kinoshita T (2003) Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol Biol Cell 14:1780–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Guo X, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang Q, Luo Y, Gu H, Dresselhaus T et al (2016) Maternal ENODLs are required for pollen tube reception in arabidopsis. Curr Biol 26:2343–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara A, Yu H, Jacobson K (1987) The Thy-1 antigen exhibits rapid lateral diffusion in the plasma-membrane of rodent lymphoid-cells and fibroblasts. P Natl Acad Sci USA 84:1290–1293

    Article  CAS  Google Scholar 

  • Jacobson K, Ishihara A, Inman R (1987) Lateral diffusion of proteins in membranes. Annu Rev Physiol 49:163–175

    Article  CAS  PubMed  Google Scholar 

  • Kessler SA, Lindner H, Jones DS, Grossniklaus U (2015) Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16:107–115

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T (2020) Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol 10:190290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Fujita M (2016) Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res 57:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144:287–294

    Article  CAS  PubMed  Google Scholar 

  • Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, Yamagata K, Maeda Y, Kinoshita T, Okabe M, Taguchi R et al (2005) Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat Med 11:160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yu MA, Geng LL, Zhao J (2010) The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J 64:482–497

    Article  CAS  PubMed  Google Scholar 

  • Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS et al (2013) Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 74:486–497

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L et al (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4:e06587

    Article  PubMed Central  Google Scholar 

  • Liu X, Castro C, Wang Y, Noble J, Ponvert N, Bundy M, Hoel C, Shpak E, Palanivelu R (2016) The Role of LORELEI in Pollen Tube Reception at the Interface of the synergid cell and pollen tube requires the modified eight-cysteine motif and the receptor-like kinase FERONIA. Plant Cell 28:1035–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luschnig C, Seifert GJ (2011) Posttranslational modifications of plasma membrane proteins and their implications for plant growth and development. Plant Cell Monogr 19:109–128

    Article  CAS  Google Scholar 

  • Medof ME, Kinoshita T, Nussenzweig V (1984) Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 160:1558–1578

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Benghezal M, Imhof I, Conzelmann A (2000) Active site determination of Gpi8p, a caspase-related enzyme required for glycosylphosphatidylinositol anchor addition to proteins. Biochemistry-Us 39:3461–3471

    Article  CAS  Google Scholar 

  • Muller A, Kloppel C, Smith-Valentine M, Van Houten J, Simon M (2012) Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C. Bba-Biomembranes 1818:117–124

    Article  PubMed  CAS  Google Scholar 

  • Nagamune K, Nozaki T, Maeda Y, Ohishi K, Fukuma T, Hara T, Schwarz RT, Sutterlin C, Brun R, Riezman H et al (2000) Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. P Natl Acad Sci USA 97:10336–10341

    Article  CAS  Google Scholar 

  • Nozaki M, Ohishi K, Yamada N, Kinoshita T, Nagy A, Takeda J (1999) Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/IoxP system. Lab Invest 79:293–299

    CAS  PubMed  Google Scholar 

  • Ohishi K, Inoue N, Kinoshita T (2001) PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. Embo J 20:4088–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi K, Nagamune K, Maeda Y, Kinoshita T (2003) Two Subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfide bridge. J Biol Chem 278:13959–13967

    Article  CAS  PubMed  Google Scholar 

  • Oxley D, Bacic A (1999) Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc Natl Acad Sci U S A 96:14246–14251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C (2004) Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J Cell Biol 167:699–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira AM, Lopes AL, Coimbra S (2016) JAGGER, an AGP essential for persistent synergid degeneration and polytubey block in Arabidopsis. Plant Signal Behav 11:601–614

    Article  CAS  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Resh MD (2013) Covalent lipid modifications of proteins. Curr Biol : CB 23:R431–R435

    Article  CAS  PubMed  Google Scholar 

  • Rosse WF (1990) Phosphatidylinositol-linked proteins and paroxysmal-nocturnal hemoglobinuria. Blood 75:1595–1601

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W (1999) Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 61:1445–1451

    Article  CAS  PubMed  Google Scholar 

  • Svetek J, Yadav MP, Nothnagel EA (1999) Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. J Biol Chem 274:14724–14733

    Article  CAS  PubMed  Google Scholar 

  • Takos AM, Dry IB, Soole KL (2000) Glycosyl-phosphatidylinositol-anchor addition signals are processed in Nicotiana tabacum. Plant J 21:43–52

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Maeda Y, Tashima Y, Kinoshita T (2004) Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 279:14256–14263

    Article  CAS  PubMed  Google Scholar 

  • Teparic R, Stuparevic I, Mrsa V (2004) Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiol-Sgm 150:3145–3150

    Article  CAS  Google Scholar 

  • Tsukamoto T, Qin Y, Huang YD, Dunatunga D, Palanivelu R (2010) A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62:571–588

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Yamaguchi R, Ikawa M, Okabe M, Morii E, Maeda Y, Kinoshita T (2007) PGAP1 knock-out mice show otocephaly and male infertility. J Biol Chem 282:30373–30380

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T et al (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  CAS  PubMed  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, Cumming M, Kelley LA, Sternberg MJ, Krishnakumar V et al (2017) ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29:1806–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hirata T, Maeda Y, Murakami Y, Fujita M, Kinoshita T (2019) Free, unlinked glycosylphosphatidylinositols on mammalian cell surfaces revisited. J Biol Chem 294:5038–5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenfuhrer J, von Mering C, Grossniklaus U (2010a) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    Article  CAS  PubMed  Google Scholar 

  • Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenfuhrer J, von Mering C, Grossniklaus U (2010b) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    Article  CAS  PubMed  Google Scholar 

  • Xu HL, Knox RB, Taylor PE, Singh MB (1995) Bcp1, a gene required for male-fertility in arabidopsis. P Natl Acad Sci USA 92:2106–2110

    Article  CAS  Google Scholar 

  • Yamaguchi R, Muro Y, Isotani A, Tokuhiro K, Takumi K, Adham I, Ikawa M, Okabe M (2009) Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol Reprod 81:142–146

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Honda A, Ogura A, Kashiwabara S, Fukami K, Baba T (2008) Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by sperm exposure to uterine microenvironment. Genes Cells 13:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Zacks MA, Garg N (2006) Recent developments in the molecular, biochemical and functional characterization of GPI8 and the GPI-anchoring mechanism [Review]. Mol Membr Biol 23:209–225

    Article  PubMed  CAS  Google Scholar 

  • Zhou K (2019) Glycosylphosphatidylinositol-anchored proteins in arabidopsis and one of their common roles in signaling transduction. Front Plant Sci 10:1022

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by an NSF grant to R.P. (IOS-1146090) and the Boynton Graduate Fellowship in Plant Molecular Biology, School of Plant Sciences, University of Arizona and University of Arizona Graduate Professional Student Council to N.D. We thank Dr. Taroh Kinoshita, Osaka University, Japan, for discussions and comments on GPI biology, and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ND analyzed the data and prepared the figures. ND and RP conceived and wrote the manuscript.

Corresponding author

Correspondence to Ravishankar Palanivelu.

Additional information

Communicated by Thomas Dresselhaus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

. Protein sequence analysis of PIGK, GPI8, and AtGPI8 proteins. a Multiple alignment of Homo sapiens PIGK, Saccharomyces cerevisiae GPI8, and Arabidopsis AtGPI8 (AT1G08750) using Clustal Omega and visualization using BOXSHADE 3.2. H. sapiens Cys92 is boxed in red and forms a functionally important and conserved disulfide bond with PIGT Cys182 (Ohishi et al. 2003). Asterisks indicate conserved residues in the catalytic dyad (Gamage and Hendrickson 2013). Identical residues are colored black and similar residues are colored gray. b Amino acid sequences from Arabidopsis AtGPI8 (388AA, 0-TM), H. sapiens PIGK (395AA, 1-TM), and S. cerevisiae GPI8 (411AA, 1-TM) analyzed in the TMHMM Server v. 2.0 for the presence and location of transmembrane helices. c Clustal Omega amino acid sequence alignment scores for Arabidopsis AtGPI8, H. sapiens PIGK, and S. cerevisiae GPI8. Similarity percentage was calculated using Blosum62 matrix with a threshold of >1. (TIF 797 kb)

Supplementary Fig. 2

. Protein sequence analysis of PIGT, GPI16, and AtPIGT proteins. a Multiple alignment of Saccharomyces cerevisiae GPI16, Arabidopsis AtPIGT (AT3G07140), and Homo sapiens PIGT amino acid sequences using Clustal Omega and visualization using BOXSHADE 3.2. Identical residues are colored black and similar residues are colored gray. H. sapiens Cys182 is boxed in red and forms a functionally important and conserved disulfide bond with GPI8/PIGK Cys92 (Ohishi et al. 2003). b Amino acid sequences of Arabidopsis AtPIGT (643AA, 1-TM), H. sapiens PIGT (578AA, 1-TM), and S. cerevisiae GPI16 (610AA, 1-TM) analyzed in the TMHMM Server v. 2.0 for the presence and location of transmembrane helices. c Clustal Omega amino acid sequence alignment scores for Arabidopsis AtPIGT, H. sapiens PIGT, and S. cerevisiae GPI16. Similarity percentage was calculated using Blosum62 matrix with a threshold of >1. (TIF 1156 kb)

Supplementary Fig. 3

. Protein sequence alignment of GAB1, PIGU, AtPIGU1, and AtPIGU2 proteins. a Multiple alignment of Saccharomyces cerevisiae GAB1, Homo sapiens PIGU, and Arabidopsis AtPIGU1 (AT1G63110) and AtPIGU2 (AT1G12730) amino acid sequences using Clustal Omega and visualization using BOXSHADE 3.2. Identical residues are colored black and similar residues are colored gray. Red box refers to the conserved 21 amino acid region described in (Hong et al. 2003). b Amino acid sequences of Arabidopsis AtPIGU1 (At1G63110; 397AA, 7-TM), AtPIGU2 (At1G12730; 474AA, 10-TM), H. sapiens PIGU (437AA, 9-TM), and S. cerevisiae GAB1 (396AA, 8-TM) analyzed in the TMHMM Server v. 2.0 for the presence and location of transmembrane helices. c Clustal Omega amino acid sequence alignment scores for Arabidopsis AtPIGU1 and AtPIGU2, H. sapiens PIGU, and S. cerevisiae GAB1. Similarity percentage was calculated using Blosum62 matrix with a threshold of >1. (TIF 4006 kb)

Supplementary Fig. 4

. Protein sequence analysis of GAA1, AtGAA1, and GPAA1 proteins. a Multiple alignment of Saccharomyces cerevisiae GAA1, Arabidopsis AtGAA1 (AT5G19130), and Homo sapiens GPAA1 amino acid sequences using Clustal Omega and visualization using BOXSHADE 3.2. Identical residues are colored black and similar residues are colored gray. b Amino acid sequences from Arabidopsis AtGAA1 (699AA, 6-TM), H. sapiens GPAA1 (621AA, 7-TM), and S. cerevisiae GAA1 (614AA, 6-TM) analyzed in the TMHMM Server v. 2.0 for the presence and location of transmembrane helices. c Clustal Omega amino acid sequence alignment scores for Arabidopsis AtGAA1, H. sapiens GPAA1, and S. cerevisiae GAA1. Similarity percentage was calculated using Blosum62 matrix with a threshold of >1. (TIF 1372 kb)

Supplementary Fig. 5

. Protein sequence analysis of GPI17, AtPIGS and PIGS proteins. a Multiple alignment of Saccharomyces cerevisiae GPI17, Arabidopsis AtPIGS (AT3G07180), and Homo sapiens PIGS, amino acid sequences using Clustal Omega and visualization with BOXSHADE 3.2. Identical residues are colored black and similar residues are colored gray. b Amino acid sequences of Arabidopsis AtPIGS (599AA, 2-TM), H. sapiens PIGS (555AA, 2-TM), and S. cerevisiae GPI17 (534AA, 2-TM) were analyzed in the TMHMM Server v. 2.0 for the presence and location of transmembrane helices within each protein. c Clustal Omega amino acid sequence alignment scores for Arabidopsis AtPIGS, H. sapiens PIGS, and S. cerevisiae GPI17. Similarity percentage was calculated using Blosum62 matrix with a threshold of >1. (TIF 1225 kb)

Supplementary Fig. 6

. Phylogenetic Gene Tree of PIGU in Brassicaceae. Best-scoring Maximum Likelihood phylogenetic tree from RAxML (Geneious Prime) built with 100 bootstrap replicates using the GTR GAMMA model of nucleotide substitution. Full length nucleotide CDS of AtPIGU1 and AtPIGU2 orthologs were identified via reciprocal BLAST for 7 Brassicaceae species as well as Carica papaya, Solanum lycopersicum, and Aquilegia coerulea using genomes available through Phytozome v12.1.6 and CoGe. Alignment was generated using Geneious Translation Alignment, MUSCLE algorithm, with the BLOSUM62 cost matrix. Scale bar is patristic distance based on the number of apomorphic changes separating two taxa on the cladogram. Red star indicates the node forming the Brassicaceae clade and blue box indicates species belonging to Lineage II of Brassicaceae. (TIF 158 kb)

Supplementary Fig. 7

. AtPIGU1 and AtPIGU2 expression in Arabidopsis development. Relative mRNA levels of AtPIGU1 (At1g63110) / AtPIGU2 (At1g12730) in different Arabidopsis tissues. Image was generated with the Klepikova eFP (RNA-Seq data) at bar.utoronto.ca/eplant (Waese et al. 2017). (TIF 496 kb)

Supplementary Table 1

. Microarray analysis of Arabidopsis GAP expression in gametophytes. Expression of 248 GAPs predicted by Borner et al. (2003) and two additional GAPs identified by PLD treatment in Elortza et al. (2006) were analyzed for gametophytic expression using publically available Affymetrix ATH1 GeneChip microarray data on cell types dissected from the MG and FG via laser capture microdissection (Wuest et al. 2010a). 207 GAPs out of the 250 predicted GAPs were on the chip. Microarray analysis was done with three biological replicates and analyzed for presence/absence calls using the PANP algorithm described in Wuest et al. (2010). Cells are colored in shades of red according to the number of biological replicates out of three total biological replicates with “present calls” for each gene and cell type. Genes are grouped either by gene family as described in Borner et al. (2003) (First sheet) or by expression pattern (Second sheet). Green cells indicate that gene was verified as pollen expressed via RT-PCR (Lalanne et al. 2004), Green text indicates that gene was verified as a pollen-expressed GAP through PI-PLC – Mass Spectrometry (Lalanne et al. 2004), italic texts indicate that gene was verified as a vegetatively expressed GAP through PI-PLC/PLD—Mass Spectrometry (Elortza et al. 2006; Elortza et al. 2003). Gene IDs highlighted have reproductive mutant phenotypes and are listed in Table 1. (XLSX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desnoyer, N., Palanivelu, R. Bridging the GAPs in plant reproduction: a comparison of plant and animal GPI-anchored proteins. Plant Reprod 33, 129–142 (2020). https://doi.org/10.1007/s00497-020-00395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-020-00395-9

Keywords

Navigation